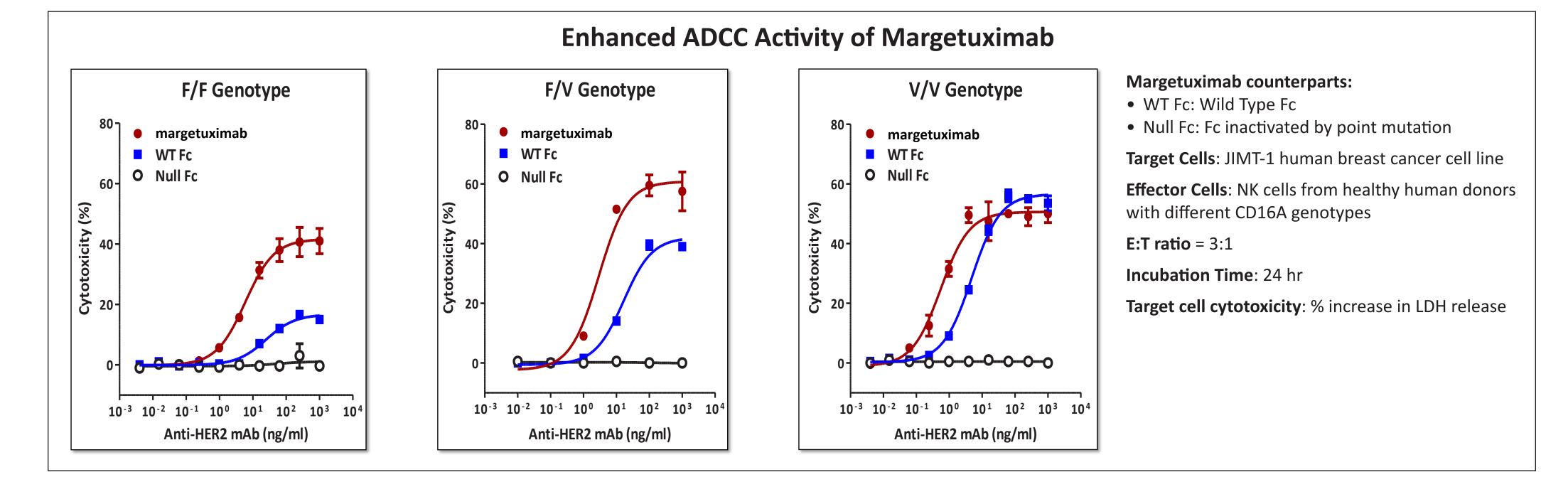

Updated findings of a first-in-human phase 1 study of margetuximab, an Fc-optimized chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors

Howard A. Burris III, Giuseppe Giaccone, Seock-Ah Im, Todd Michael Bauer, Do-Youn Oh, Suzanne Fields Jones, Jeffrey L. Nordstrom, Hua Li, David A Carlin, Jan E. Baughman, Robert Joseph Lechleider, Yung-Jue Bang; Sarah Cannon Research Institute, Tennessee Oncology, PLLC, Nashville, TN; National Cancer Institute at the National Institutes of Health, Bethesda, MD; Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; MacroGenics, Inc., Rockville, MD; MacroGenics, Inc., South San Francisco, CA

Background


- Signaling through HER2 is an important mechanism in the progression of cancers which overexpress HER2.
- In addition to blocking signaling through HER2, trastuzumab, the prototypical anti-HER2 agent, also mediates antibodydependent cell-mediated cytotoxicity (ADCC), which may be an important mechanism for efficacy.
- Two isoforms of the CD16A (FcγRIIIA) stimulatory receptor found on natural killer (NK) cells and macrophages differ by one amino acid at codon 158 and are important for mediating ADCC.

- The high affinity 158 V/V homodimer of CD16A is present on approximately 20% of the population and the lower affinity F/F homodimer and F/V heterodimer are present in the remaining 80% [1].
- A retrospective analysis of patients with metastatic breast cancer receiving trastuzumab plus taxane therapy [2] demonstrated superior outcomes in patients who were homozygous for the high affinity 158 V/V homodimer of CD16A compared to patients with lower affinity F/V heterodimers or F/F homodimers.
- Margetuximab (MGAH22) is a next-generation, molecular-engineered, Fc-optimized monoclonal antibody derived from 4D5, the parent antibody of trastuzumab. Margetuximab and trastuzumab both bind the same epitope of HER2 with similar high affinities.
- The Fc domain of of margetuximab has been engineered to substantially increase binding to both the low- and highaffinity isoforms of CD16A and substantially reduce binding to the inhibitory FcγR, CD32B [3].

	Optimized Fcy	R Binding Prop	erties of Marge	tuximab	
	CD16A (Allelic	FcγRIIIA) Forms	•	FcγRIIA) Forms	
	F ¹⁵⁸	V ¹⁵⁸	H ¹³¹	R ¹³¹	CD32B
Antibody	(Low Binder)	(High Binder)	(High Binder)	(Low Binder)	FcγRIIB
Wild Type Fc	1059 nM	415 nM	39 nM	36 nM	52 nM
Margetuximab	161 nM	89 nM	34 nM	218 nM	437 nM
Relative Change	↑ 6.6x	↑ 4.7x	\leftrightarrow	\checkmark	↓ 8.4x

- Margetuximab and trastuzumab exhibit similar tumor-directed, effector cell-independent, anti-proliferative activity in breast cancer cells in vitro in the absence of immune effectors [3].
- In ADCC assays using effector cells from normal human subjects, margetuximab was more potent and produced greater maximum cytotoxicity than did a trastuzumab surrogate with a wild-type Fc domain [3].

- In transgenic mice expressing the human CD16A 158F/F low affinity FcγR, margetuximab produced superior tumor growth suppression of JIMT-1 cells, a line insensitive to growth inhibition by anti-HER2 antibodies, compared to the trastuzumab surrogate with a wild-type Fc [3].
- It is hypothesized that the enhanced ADCC activity of margetuximab could mediate greater antitumor activity compared to monoclonal antibodies with wild-type Fc domains such as trastuzumab.

References

- 1. Lehrnbecher T, Foster CB et al. Blood. 1999;94:4220–32
- 2. Musolino A, Naldi N et al. J Clin Oncol. 2008;26:1789–96.
- 3. Nordstrom JL, Gorlatov S et al. Breast Cancer Res. 2011 13:R123

Methods

Study Objectives

Primary Objective:

To evaluate safety of margetuximab using two dosing regimens.

Secondary Objectives:

- To determine the maximum tolerated dose (MTD) of margetuximab.
- To characterize the pharmacokinetics (PK) and immunogenicity of margetuximab.
- To describe preliminary evidence of anti-tumor activity of margetuximab in patients with HER2+ tumors, including breast and gastric cancer.

Methods

- Patients were enrolled at 3 sites, two in the US and one in Korea using two dosing regimens.
- Regimen A: 3+3 design with sequential cohorts of 0.1, 0.3, 1.0, 3.0, and 6.0 mg/kg administered on Weeks 1, 2, 3, and 4 for the first cycle and then 3 of every 4 weeks for subsequent cycles.
- Regimen B: 6+6 design with sequential cohorts of 10, 15, and 18 mg/kg administered once every 3 weeks.
- Margetuximab was administered intravenously over 120 minutes with pre-medication.
- MTD was defined as the highest dose evaluated at which <33% of patients in the cohort experience DLT.
- Tumor response was evaluated by CT scan every 6 weeks using RECIST v1.1. Patients who did not demonstrate disease progression and otherwise tolerated margetuximab were allowed to remain on study.
 Cardiac function was monitored by multi-gated acquisition vetriculography (MUGA) or echocardiograms performed at baseline and at the end of every other
- Blood samples for pharmacokinetics were collected prior to and at 1, 2, 4, 6, ~24, ~72, and ~96 hours after infusion of the first dose of margetuximab and at
- A quantitative sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure margetuximab concentration in serum.
- A quantitative satisfiest enzyme initial object assay (ELISA) was used to measure marget aximal concentration in serial.
 A 2-compartment model with parallel linear and Michaelis-Menten elimination and allometric scaling of all clearance and volume parameters was used to describe the observed data. Standard errors were obtained from the NONMEM covariance step.
- The study protocol was reviewed and approved by relevant institutional review boards or ethics committees and informed consent obtained from all patients.
 The study was registered with clinicaltrials.gov (NCT01148849).

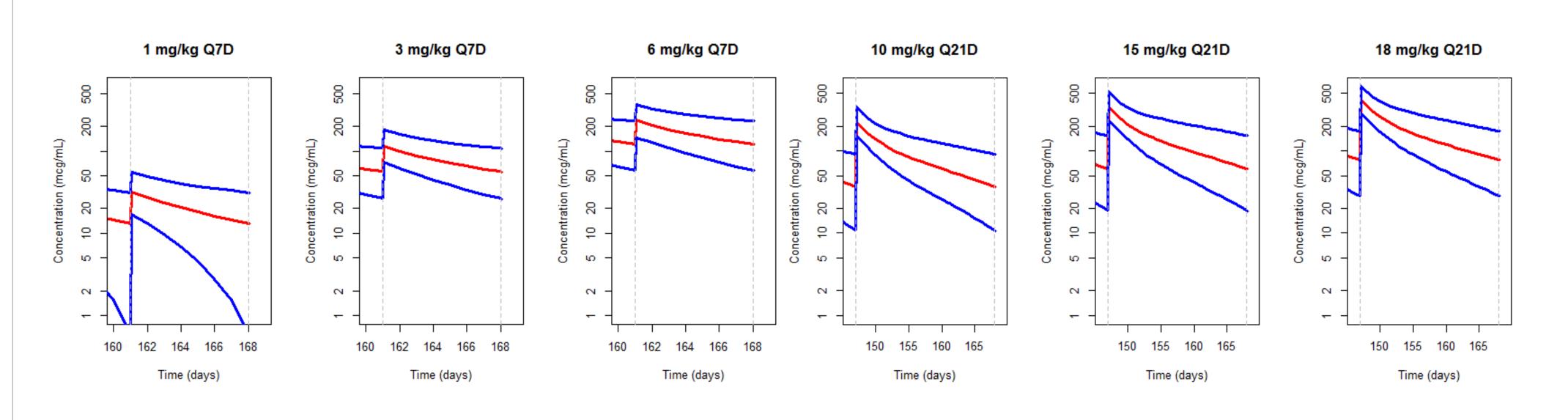
Key Inclusion Criteria

- Histologically- or cytologically-confirmed carcinoma that overexpressed HER2 by immunohistochemistry (IHC) (2+ or 3+) by local laboratory testing;
- Disease progression during or following the last treatment regimen;
- Age ≥18 years and had life expectancy ≥3 months;
- Eastern Cooperative Oncology Group performance status score ≤1;
- Measurable disease by RECIST 1.1 criteria;
- Adequate bone marrow, renal, and hepatic function;
- Left ventricular ejection fraction (LVEF) ≥50%; and
- Completion of immunosuppressive medications, antineoplastic therapies, or vaccinations prior to enrollment.

Key Exclusion Criteria

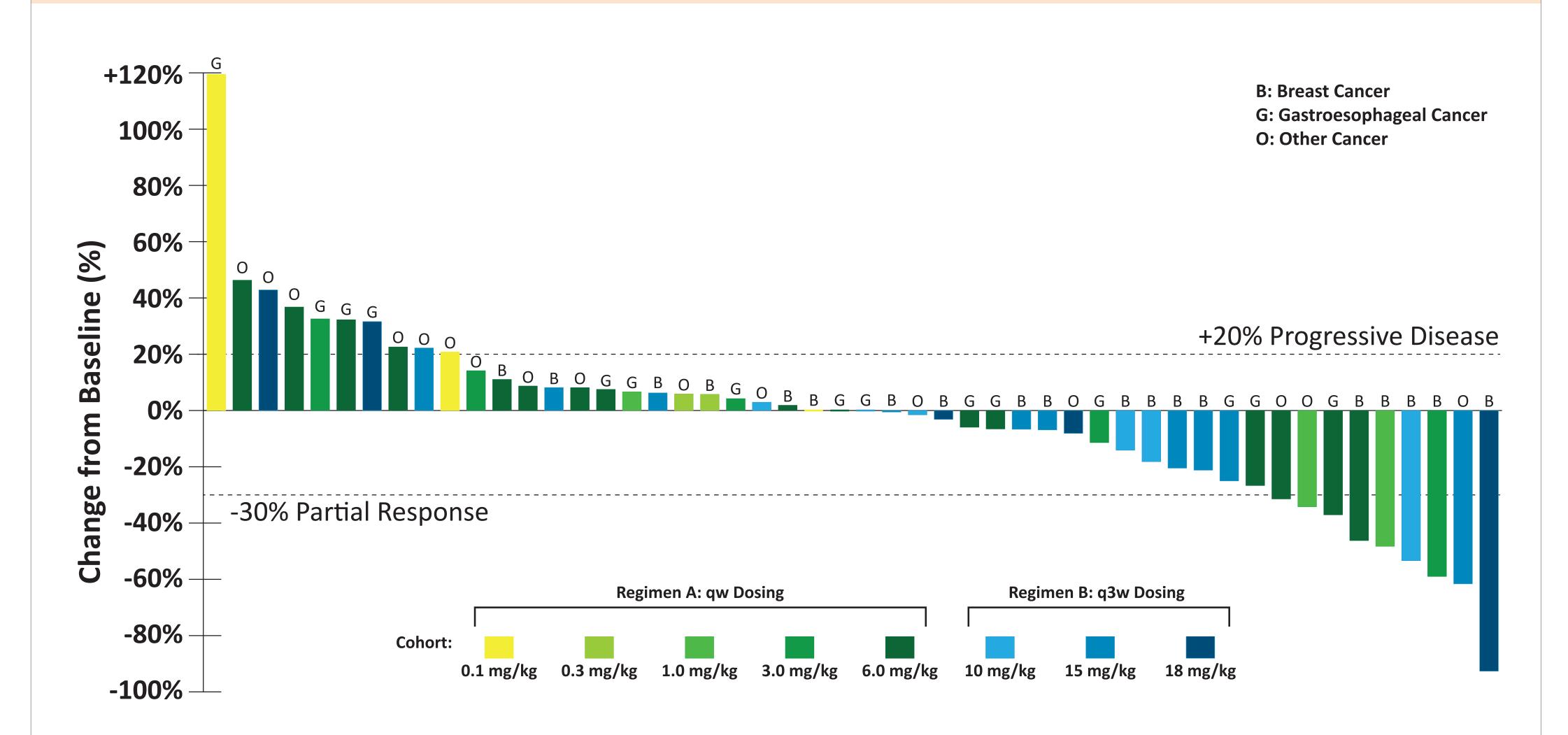
- Pregnant or breastfeeding women;
 Lifetime anthracycline exposure >360 mg/m2 of dovorubicin or
- Lifetime anthracycline exposure >360 mg/m2 of doxorubicin or equivalent:
- Heart disease corresponding to New York Heart Association class III or IV;
- Significant pulmonary compromise; or
- Treatment with radiotherapy and/or chemotherapy within 4 weeks, or monoclonal antibodies within 3 half-lives, prior to study entry.

Patient Demographics


	MBC	All	Cancer Type
Characteristic	(N= 23)	(N= 60)	Breast
Age (years):			Gastroesoph
Ν	23	60	
Median (Range)	55.0 (36.0 - 72.0)	59.5 (36.0 - 83.0)	Colorectal
Gender [n/N (%)]:			Other Gastro
Female	23/23 (100)	33/60 (55.0)	Head and Ne
Male	0	27/60 (45.0)	Genitourinar
Race [n/N (%)]:			Lung
Asian	17/23 (73.9)	40/60 (66.7)	
Black	1/23 (4.3)	3/60 (5.0)	
White	5/23 (21.7)	17/60 (28.3)	
Prior HER2 Therapy	22/23 (95.7)	39/60 (65.0)	
Prior Lines of Therapy	4 (3-7)	3 (1-7)	

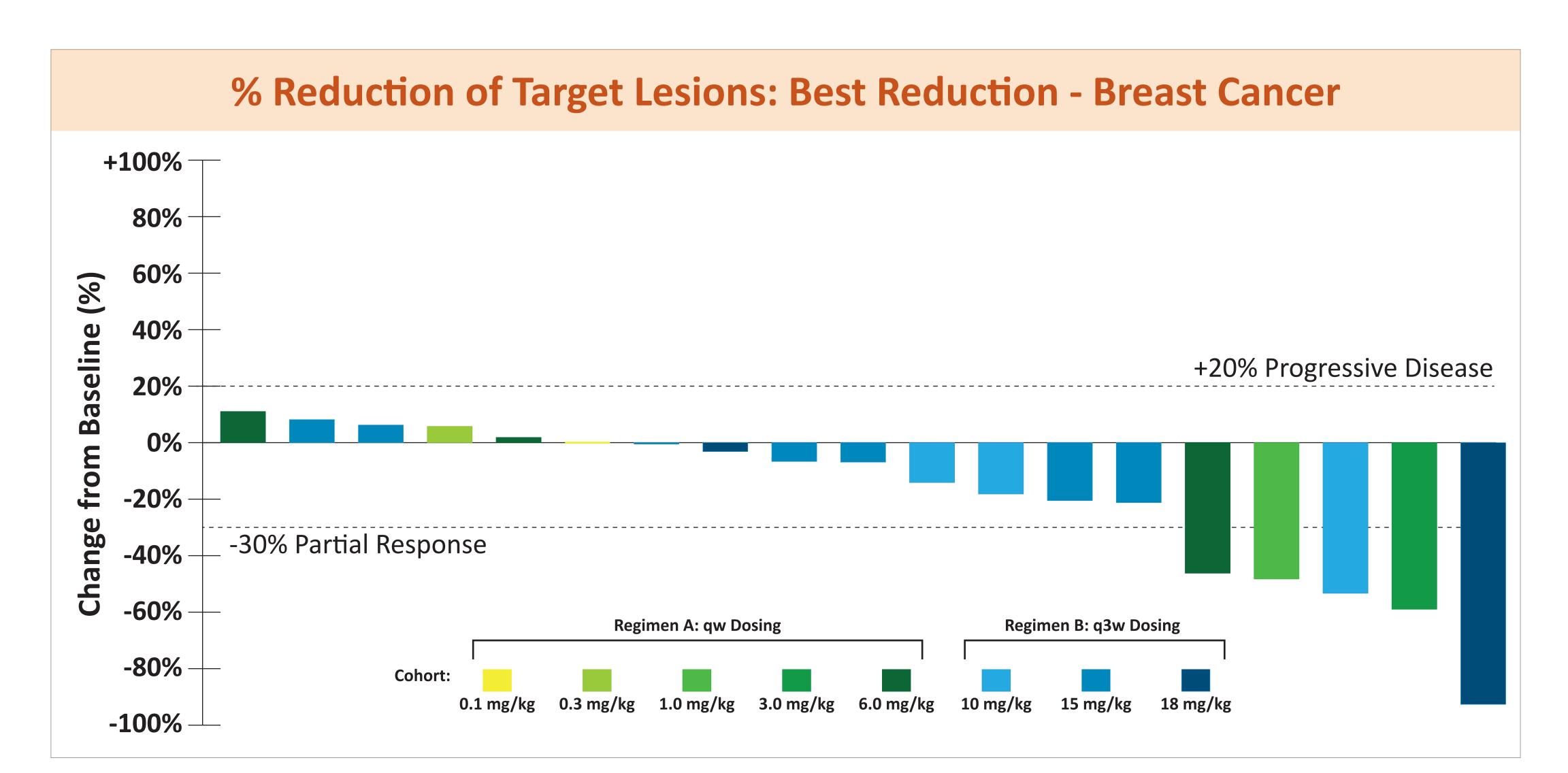
N (%)
23 (38.3)
18 (30.0)
7 (11.7)
4 (6.7)
3 (5.0)
3 (5.0)
2 (3.3)

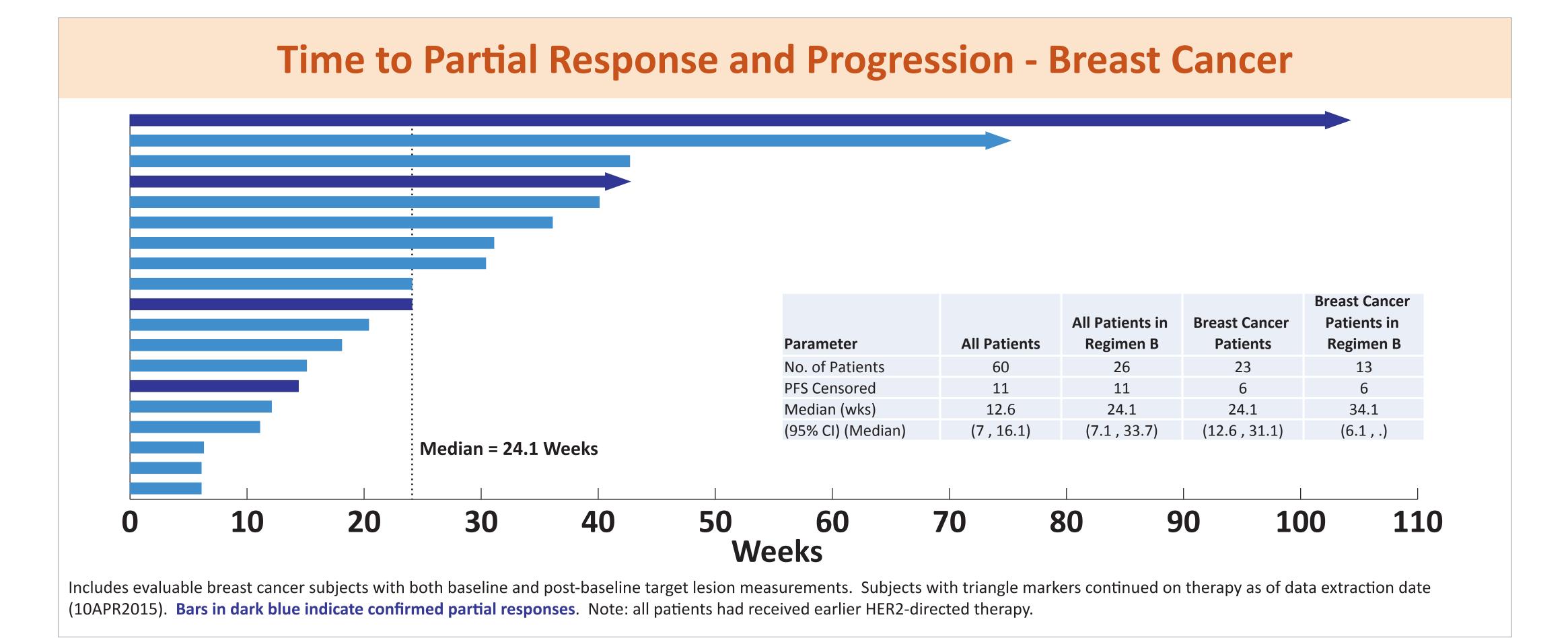
Results


Safety								
Adverse Events (≥ 10%) (n (%))								
				Related				
Preferred Term	All Patients	All Related	Grade 3,4	Grade 3,4				
Hematological								
Lymphopenia/lymphocyte count decreased	17 (28)	8 (13)	10 (17)	2 (3)				
Anaemia	10 (17)	2 (3)	2 (3)	•				
Non-hematological								
Infusion related reaction/CRS	14 (23)	14 (23)	1 (2)	1 (2)				
Nausea	12 (20)	6 (10)	•	•				
Pyrexia	12 (20)	6 (10)	1 (2)					
Diarrhoea	11 (18)	4 (7)	•					
Decreased appetite	10 (17)	3 (5)	1 (2)					
Fatigue	10 (17)	9 (15)	1 (2)					
Vomiting	9 (15)	4 (7)	1 (2)					
Alkaline phosphatase increased	7 (12)	2 (3)	1 (2)	1 (2)				
Amylase increased	7 (12)	4 (7)	3 (5)	1 (2)				
Cough	7 (12)	1 (2)		•				
Lipase increased	7 (12)	3 (5)	5 (8)	1 (2)				
Chills	6 (10)	4 (7)						
Dizziness	6 (10)	2 (3)	•					

Pharmacokinetics

Median (red) and 90% prediction intervals (blue) of simulated concentration-time profiles following IV administration of 1, 3, 6 mg/kg QW and 10, 15, 18 mg/kg Q3W doses. For each dosing regimen, concentrations were simulated for 1000 patients with covariate values sampled with replacement from analysis population.


% Reduction of Target Lesions: Best Reduction - Evaluable Population



Acknowledgements

The authors thank the patients and their families who participated in this study. Funding was provided by MacroGenics, Inc. and Green Cross.

Clinical Activity in Breast Cancer

Conclusions

Basic Science:

- Margetuximab is a next-generation, molecularly-engineered antibody that is designed specifically to bind more effectively to all isoforms of the activating FcR and less effectively to the inhibitory FcR.
- As a result of these modifications, margetuximab demonstrates enhanced ADCC, irrespective of the FcR isoform and across tumor cell lines with HER2 expression ranging from 1+ to 3+ intensity.

Clinical Results:

- Margetuximab was well-tolerated. Infusion reactions were generally mild overall, and were well-controlled with premedication. No cardiac dysfunction was noted.
- Monotherapy anti-tumor activity observed across several tumor types including patients with breast, gastric, colorectal and head/neck cancer.
- Monotherapy antitumor activity in breast cancer patients despite extensive prior therapy and progression during prior HER2-directed therapy.
- Median PFS of approximately 5.5 months in patients with HER2+ MBC compares favorably to patients who received chemo+trastuzumab on TH3RESA (3.2 months).
- Pivotal Phase 3 study (SOPHIA) to start this summer will investigate margetuximab+chemotherapy vs. trastuzumab+chemotherapy.

