Abstract 140

Phase 1b/2 Study of Margetuximab Plus Pembrolizumab in Advanced HER2+ Gastroesophageal Junction or Gastric Adenocarcinoma

¹University of Chicago Pritzker School of Medicine, Chicago, IL; ²Washington University, New Haven, CT; ¹University of Miami Sylvester Comprehensive Cancer Institute, Boston, MA; ⁶MacroGenics, Inc., Rockville, MD; ⁷Yale School of Medicine, Yale University, New Haven, CT; ¹University of Miami Sylvester Comprehensive Cancer Institute, Boston, MA; ⁶MacroGenics, Inc., Rockville, MD; ⁷Yale School of Medicine, Yale University, New Haven, CT; ¹University of Miami Sylvester Comprehensive Cancer Institute, Boston, MA; ⁶MacroGenics, Inc., Rockville, MD; ⁷Yale School of Medicine, Yale University, New Haven, CT; ¹University of Miami Sylvester Comprehensive Cancer Institute, Seattle, WA; ⁵Dana-Farber Cancer Institute, Boston, MA; ⁶MacroGenics, Inc., Rockville, MD; ⁷Yale School of Medicine, Yale University, New Haven, CT; ¹University of Miami Sylvester Comprehensive, Inc., Rockville, MD; ³University, New Haven, CT; ¹University, New Haven, ⁸Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; ¹⁰Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ¹¹Korea University Guro Hospital, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¹⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, School of Medicine, School of Medicine, Seoul, School of Medicine, School of Medicine, School of Medicine, School of Medi ¹³Korea University College of Medicine, Seoul, Korea; ¹⁴Asan Medical Center, Singapore; ¹⁵Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea; ¹⁶National University Rundang Hospital, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea; ¹⁶National University Hospital, Seoul National University College of Medicine, Seoul, Korea; ¹⁶National University College of Medicine, Seoul, Korea; ¹⁶National University Rundang Hospital, Seoul, Korea; ¹⁶National University Hospital, Seoul National University Hospital, Seoul, Korea; ¹⁶National University Rundang Hospital, Seoul, Korea; ¹⁶National University Rundang Hospital, Seoul, Korea; ¹⁶National University Hospital, Seoul, Korea; ¹⁶National University Rundang Hospital, Seoul, Korea; ¹⁷Seoul, Korea; ¹⁷Seoul, Korea; ¹⁷Seoul, Korea; ¹⁸National University Rundang Hospital, Seoul, Korea; ¹⁹Seoul, Kor

NCT02689284

Background

- Trastuzumab + chemotherapy is standard treatment in 1st line advanced HER2+ gastroesophageal adenocarcinoma (GEA)
- •Margetuximab: anti-HER2 monoclonal antibody with an optimized Fc domain that both increases affinity for the activating CD16A (Fc γ R3A) receptor on NK cells/monocytes and decreases affinity for the inhibitory CD32B (Fc γ R2B) receptor – Designed to mediate activity irrespective of CD16A genotype
- •Outcomes for trastuzumab-treated breast cancer patients who carry lower-affinity CD16A-F allele may be worse than those who are homozygous for the higher affinity V allele¹
- Loss of HER2 amplification may occur after trastuzumab failure in a subset of GEA patients who are initially HER2+
- •Margetuximab has demonstrated single agent antitumor activity in patients with HER2+ GEA in a Phase 1 study
- Pembrolizumab and nivolumab approved for 3rd-line treatment of recurrent PD-L1+ gastric/gastroesophageal (GEJ) cancer
- Preclinical studies suggest that engagement of innate and adaptive immunity with the combination of anti-HER2 antibodies and T-cell checkpoint inhibition could achieve greater antitumor activity than either agent alone²
- Goal: Develop a chemotherapy-free approach for the treatment of gastroesophageal cancer

Phase 1b/2 Clinical Trial

Open label, dose escalation 3+3 design study of margetuximab (marge) in combination with pembrolizumab (pembro)

Primary Objective

- Characterize safety, tolerability and maximum tolerated dose (MTD) of combination
- Investigate preliminary anti-tumor activity by objective response rate (ORR) & response duration

Secondary Objectives

- Investigate preliminary overall survival (OS) and progression-free survival (PFS)
- Characterize pharmcodynamic activity of the combination
- Characterize pharmacokinetics and immunogenicity of combination

Patient Population

Relapsed/refractory advanced HER2+ PD-L1-unselected patients with gastroesophageal junction or gastric cancer (GC) post trastuzumab failure

Methods

- Dose escalation evaluated marge 10 and 15 mg/kg and 200 mg pembro q3weeks for 2nd line or higher patients
- Cohort expansion evaluated safety and ORR by RECIST v1.1 in 2nd line patients
- Disease control rate (DCR) = proportion of patients with complete response (CR) + partial response (PR) + stable disease (SD)
- Combination given every 21 days; response assessed every 6 weeks
- •HER2 amplification status assessed in a subset of patients by plasma circulating tumor (ct) DNA analysis prior to Cycle 1

Presented at The 2018 Gastrointestinal Cancers Symposium, January 18–20, 2018, San Francisco, CA

Daniel V.T. Catenacci¹, Haeseong Park², A. Craig Lockhart³, Philip Jordan Gold⁴, Peter C. Enzinger⁵, Jeffrey L. Nordstrom⁶, Sam Hong⁶, Howard S. Hochster⁷, Ronan Joseph Kelly⁸, Hope Elizabeth Uronis⁹, Johanna C. Bendell¹⁰, Sang Cheul Oh¹¹, Se Hoon Park¹², Yeul Hong Kim¹³, Yoon-Koo Kang¹⁴, Keun-Wook Lee¹⁵, Matthew CH Ng¹⁶, Jon M. Wigginton⁶, Jan Kenneth Davidson-Moncada⁶, Yung-Jue Bang¹⁷

Demographics

Chara	All Patients (n=67)*		
Age	Mean ± SD	58.4 ± 12.70	
	Median (Range)	60.0 (19.0, 79.0)	
Gender [n (%)]	Male	56 (83.6)	
	Female	11 (16.4)	
Race [n (%)]	Asian	28 (41.8)	
	Black or African American	2 (3.0)	
	Other	4 (6.0)	
	White	33 (49.3)	
ECOG Status [n (%)]	0	26 (38.8)	
	1	41 (61.2)	
Diagnosis [n (%)]	Gastric Cancer	35 (52.2)	
	GEJ Cancer	32 (47.8)	

Dala cul on December 4(n, 2(

Safety

Treatment with the combination of margetuximab and pembrolizumab was well-tolerated overall

	All Related AE		AIIAE	
Adverse Event	All (N=67)	>Gr 3	All (N=67)	>Gr 3
TOTAL	37 (55.2)	8 (11.9)	60 (89.6)	31 (46.3)
Fatigue	10 (14.9)		18 (26.9)	
Diarrhoea	6 (9.0)		14 (20.9)	
Anaemia	2 (3.0)		14 (20.9)	9 (13.4)
Nausea	3 (4.5)	1 (1.5)	13 (19.4)	1 (1.5)
Abdominal pain	1 (1.5)		11 (16.4)	3 (4.5)
Decreased appetite	3 (4.5)		11 (16.4)	
Vomiting	1 (1.5)	1 (1.5)	10 (14.9)	3 (4.5)
Pruritus	7 (10.4)		10 (14.9)	
Infusion related reaction	8 (11.9)	1 (1.5)	8 (11.9)	1 (1.5)
Insomnia			8 (11.9)	
Constipation			7 (10.4)	
Hypoalbuminaemia			7 (10.4)	1 (1.5)

mber 4th, 2017. Events occurring >10% pts

•55% of patients experienced a treatment related AE (TRAE), most \leq Grade 2; 11.9% of patients with \geq Grade 3. Most common TRAE is fatigue in 14.9% of patients

•3 drug-related serious adverse events reported (autoimmune hepatitis [2] and pneumonitis [1])

 11 adverse events of special interest reported (infusion related reactions [8], autoimmune hepatitis [2], pneumonitis [1])

Preliminary Clinical Activity

	Margetuximab (15mg/kg) + Pembolizumab (200 mg) q3weeks (Evaluable Patients†)					
	Gastric Cancer (n=25)	GEJ Cancer (n=26)	Asia (n=22)	North America (n=29)	Overall	
Patient Population	2nd line HER2+					
ORR (all PR [‡])	32%	4%	32%	7%	18%	
DCR (PR+SD)	72%	38%	77%	38%	55%	
Median PFS	5.5 months	1.4 months	5.5 months	1.4 months	1.6 months	
Median OS	Not Reached	Not Reached	Not Reached	Not Reached	Not Reached	
[†] Patients who have received at least one dose and have baseline and at least one post-baseline assessment. [‡] Confirmed + unconfirmed.						

*Data cut off December 4th, 2017

Results

Clinical activity (Marge 15 mg/kg + Pembro 200 mg – All Patients)

- •51 evaluable patients to date at dose of 15 mg/kg marge and 200 mg pembro (29 North America/22 Asia)
- •53% (27/51) with tumor regression (target lesions)
- Best overall responses include 9 patients (18%) with PR (6 confirmed) and 19 (37%) with SD; ORR 18%, DCR 55%

Circulating Tumor DNA Results

- •45 patients evaluated, 51% (23/45 , MAF>1%) were positive for *ERBB2* amplification by ctDNA post trastuzumab
- Response rate in the ctDNA positive post-trastuzumab population was 26% (6/23), while in the ctDNA negative population was 0% (0/22)
- Rates of *ERBB2* amplification were higher in gastric cancer vs. GEJ cancer

Cancer Type	# Samples	# Samples	ERBB2 CNV positive (A		<i>ERBB2</i> CN (MAF	V positive >1%)
	(AII)	(IVIAF > 1%)	#	%	#	%
Gastric Cancer	23	19	16	69.5	15	78.9
GEJ Cancer	22	15	9	40.9	8	53.3
CNIV/ conversionsty NAAE moutont allela fractions, stDNIA, sircy lating type or DNIA						

LINV, COPY NUMBER VARIANT; MAF, MUTANT Allele Traction; CTDINA, CIrculating tumor DINA *Data cut off December 4th, 2017.

HER2+ Gastric Cancer Patients (IHC 3+)

Results by Genotype

Among 33 patients with available CD16A genotype, responses were independent of FcR genotype; PR: 2 V/V, 3 V/F, 2 F/F with similar allelic distribution among patients with anti-tumor activity

Conclusions

- •Margetuximab + pembrolizumab is a well-tolerated, chemotherapy-free combination that has shown preliminary antitumor activity in 2nd line patients with advanced/ metastatic gastroesophageal cancer
- Response rate higher and PFS longer in gastric vs GEJ cancer, particularly in patients HER2 3+ at time of diagnosis
- Gastric cancer compared to GEJ tumors has a higher rate of retention of *ERBB2* amplification post-trastuzumab as determined by plasma ctDNA
- Retained *ERBB2* amplification by ctDNA post-trastuzumab may enrich for treatment benefit
- No clear association between response and CD16A genotype observed
- Higher response rate observed in Asia vs North America – May be due to higher percent of gastric cancer in Asia cohort

1. Musolino A, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26:1789-96. 2. Stagg J, et al. Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A. 2011 Apr 26; 108(17): 7142–7147.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this poster.