MACROGENICS[®]

R&D Day

December 13, 2016

Legal Notices

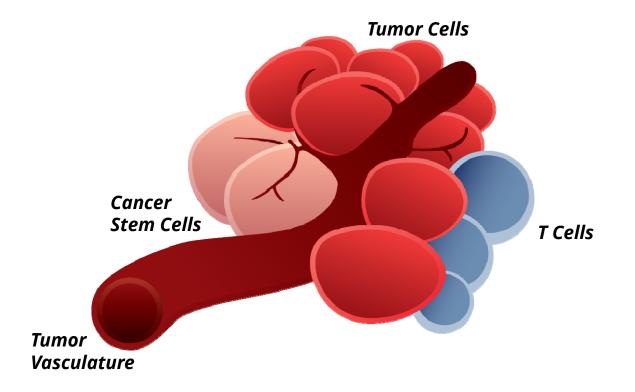
Cautionary Note on Forward-Looking Statements

Any statements in these materials about future expectations, plans and prospects for MacroGenics ("Company), including statements about the Company's strategy, future operations, clinical development of the Company's therapeutic candidates, milestone or opt-in payments from the Company's collaborators, the Company's anticipated milestones and future expectations and plans and prospects for the Company and other statements containing the words "subject to", "believe", "anticipate", "plan", "expect", "intend", "estimate", "project", "may", "will", "should", "could", "could", "can", the negatives thereof, variations thereon and similar expressions, or by discussions of strategy constitute forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: the uncertainties inherent in the initiation and enrollment of future clinical trials, expectations of expanding ongoing clinical trials, availability and timing of data from ongoing clinical trials, expectations for regulatory approvals, other matters that could affect the availability or commercial potential of the Company's product candidates and other risks described in the Company's filings with the Securities and Exchange Commission. In addition, the forward-looking statements included in this press release represent the Company's views only as of the date hereof. The Company may elect to update these forward-looking statements will cause the Company's views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so, except as may be required by law. These forward-looking statements should not be relied upon as representing the Company's views as of any date subsequent to the date hereof.

Trademarks

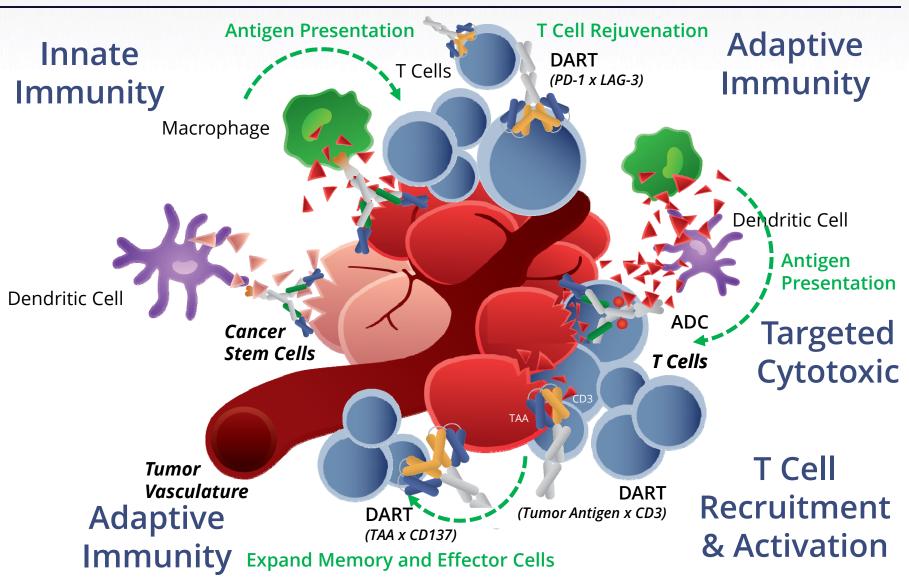
DART, TRIDENT, MacroGenics, the MacroGenics logo and "Breakthrough Biologics, Life-Changing Medicines" are trademarks or registered trademarks of MacroGenics, Inc.

BiTE is a registered trademark of Amgen Inc. DVD-Ig is a trademark of AbbVie Inc. Triomab is a registered trademark of TRION Research GmbH. Nanobodies is a registered trademark of Ablynx N.V. ADAPTIR is a registered trademark of Emergent Product Development Seattle, LLC. Biclonics is a registered trademark of Merus B.V. BiMab is a trademark of OncoMed Pharmaceuticals, Inc. DuoBody is a registered trademark of Genmab A/S. TandAb is a registered trademark of Affimed Therapeutics AG Corporation. The Servier logo is a registered trademark of Les Laboratoires Servier. The Boehringer Ingelheim logo is a registered trademark of Boehringer Ingelheim Pharma GmbH & Co. The Takeda logo is a registered trademark of Takeda Pharmaceutical Company Limited Corporation. The Pfizer logo is registered trademark of Pfizer, Inc. The Janssen logo is a registered trademark of Johnson & Johnson Corporation. The Merck logo is a trademark of Merck Sharp & Dohme Corp.



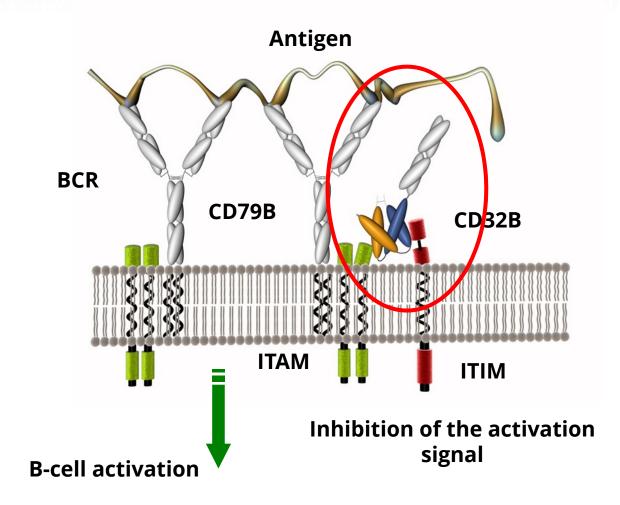
Committed to Breakthrough Biologics

Focus	 Unmet medical needs in cancer and autoimmune disease Integrated, highly productive R&D organization
Products	 Nine clinical candidates, including seven in immuno-oncology ≥1 New IND projected annually (6 INDs in last 3 years)
Platforms	 DART[®] and TRIDENT[™]- versatile multi-specific mAb technologies Fc Optimization - more potent therapeutic mAbs Cancer Stem Cells - novel target ID and drug screening
Funding	 Well capitalized to advance pipeline (\$314M cash @ 9/30/16) Alliances with BI, Janssen, Pfizer, Servier and Takeda
Employees	 314 Employees as of 11/30/16 (Rockville, MD and SSF, CA) Leadership team with extensive track-record



Integrated Immuno-Oncology Portfolio

Integrated Immuno-Oncology Portfolio


Building Comprehensive Immunotherapeutic Franchises

		HER2 Validated	B7-H3 Novel	PD-1 Emerging Backbone
Platform	mAb/ Fc-Optimized	margetuximab	enoblituzumab	MGA012 (anti-PD-1)
	DART/TRIDENT	CD137 x HER2	MGD009	 PD-1 x LAG-3 PD-1 x CTLA-4 PD-1 + MGD006 PD-1 + MGD007 PD-1 + MGD009
	Checkpoint Combination +	margetuximab + anti-PD-1	enoblituzumab + anti-PD-1 enoblituzumab + anti-CTLA-4	enoblituzumab + anti-PD-1
	ADC	_	MGC018 (B7-H3 ADC)	anti-PD-1 + MGC018 (B7-H3 ADC)

Leveraging Checkpoint Biology for Autoimmunity

MGD010 (CD32B x CD79B DART) establishes clinical proof-of-principle

Today's Agenda

Welcome Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART[®] and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Today's Agenda

Welcome

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

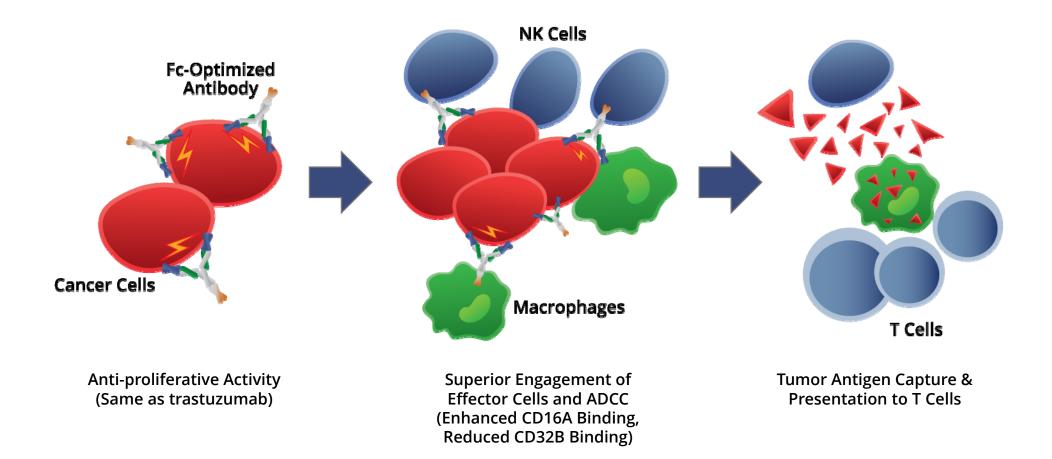
Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A

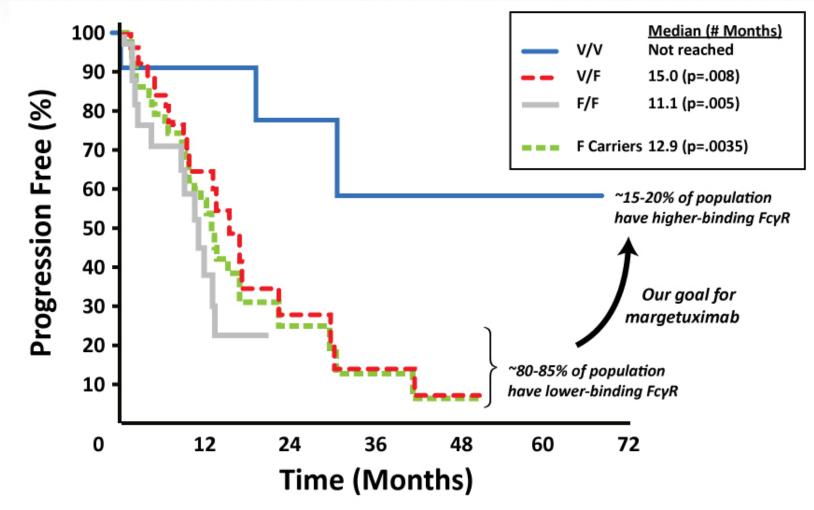
Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb


Leveraging immune modulation through Fc optimization

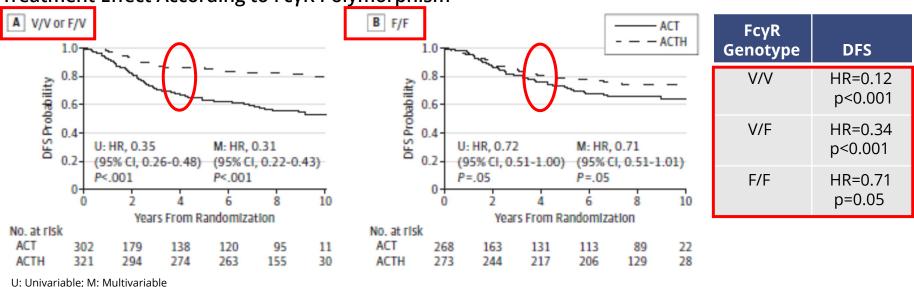
Candidate	• Fc-optimized anti-HER2 mAb
Function/ MoA	 Inhibits HER2 signaling (consistent with trastuzumab) Fc Optimization potentially enhances ADCC Increases binding to activating FcγR (CD16A) Decreases binding to inhibitory FcγR (CD32B)
	 Ph. 3 SOPHIA study (HER2+ metastatic breast cancer) Ph. 1b/2 combo study with pembrolizumab (HER2+ gastric cancer)
Partner	MacroGenics has global rights (ex-South Korea)

Enhanced Antitumor Activity through Effector Cell Engagement


Margetuximab: same signaling properties as trastuzumab <u>plus</u> enhanced ADCC

Role of FcyR Polymorphism in Response to Trastuzumab

Improved outcomes in patients homozygous for higher-affinity CD16A V-allele*



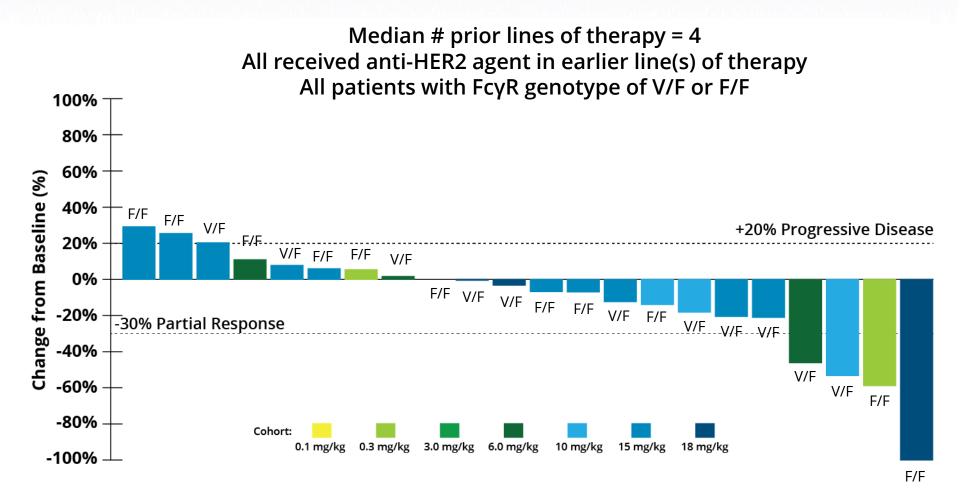
* Musolino, *et al.*, JCO 2008. Kaplan-Meler estimates of PFS to trastuzumab-based therapy by IgG fragment C receptor (FcyR) polymorphisms. PFS curves plotted by FcyRIIIa 158 valine(V)/phenylalanine(F) genotype. F carriers represent patients with either 158 V/F or 158 F/F genotype.

FcγR Status Can Influence Benefit from Trastuzumab Therapy

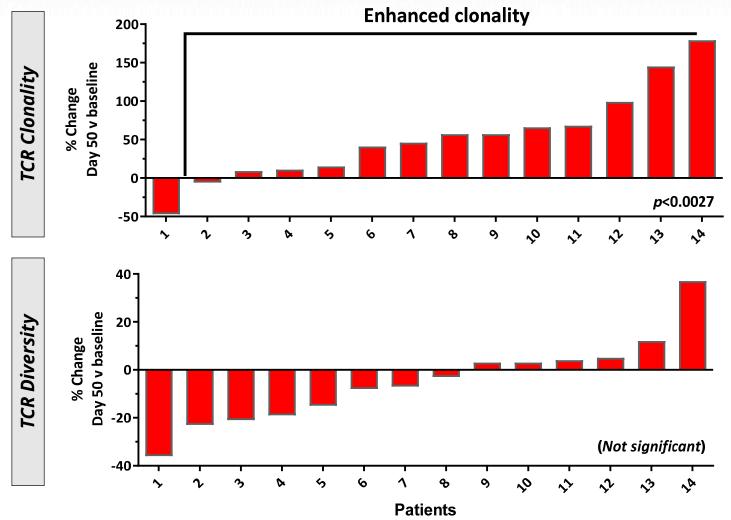
Lower affinity F-allele associated with reduced disease-free survival (DFS)

Treatment Effect According to FcyR Polymorphism

- NSABP B-31 study (n = 2043) compared standard chemo (AC-T) vs. chemo + trastuzumab (AC-TH) in adjuvant setting for 3+ HER2+ breast cancer¹
 - Adding trastuzumab improved outcome [HR = 0.46, 95% CI 0.37-0.57, p < 0.001]²
- Pre-treatment FcyR polymorphism analysis performed on subset of 1,251 samples²


¹ Romond EH et al. N Engl J Med 2005; 353:1673-1684

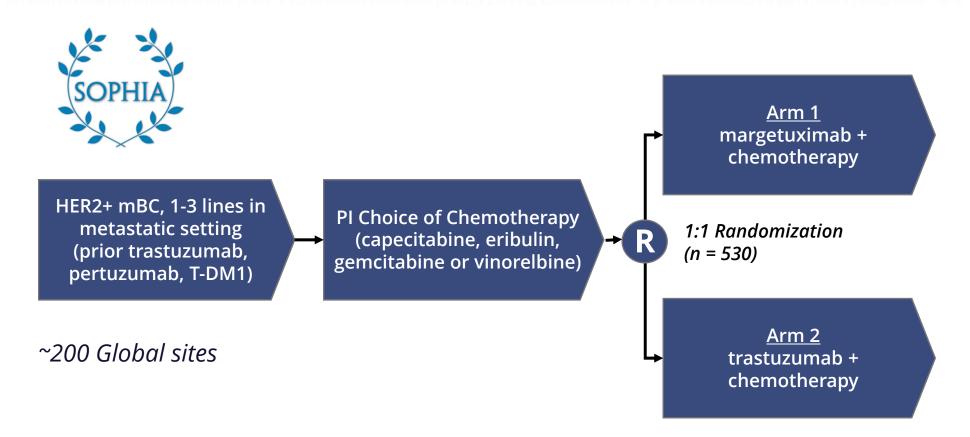
² Gavin PG et al. JAMA Oncol. Published online November 3, 2016


Margetuximab's Promising Activity Profile

Phase 1 results for metastatic breast cancer patients

Margetuximab Treatment Enhances T-cell Clonality

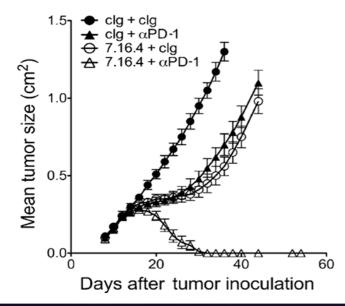
TCR spectrotype analysis indicates an effect on adaptive immunity



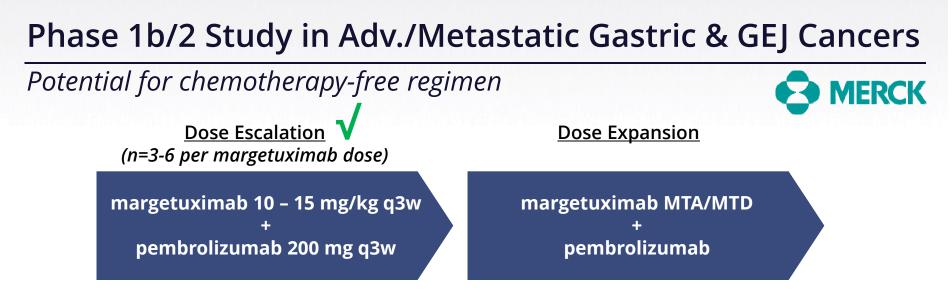
Analysis performed by Adaptive Biotechnologies on PBMC from Ph. 1 pts

SOPHIA Study to Establish Superiority to Trastuzumab

Study anticipated to complete enrollment in 2018

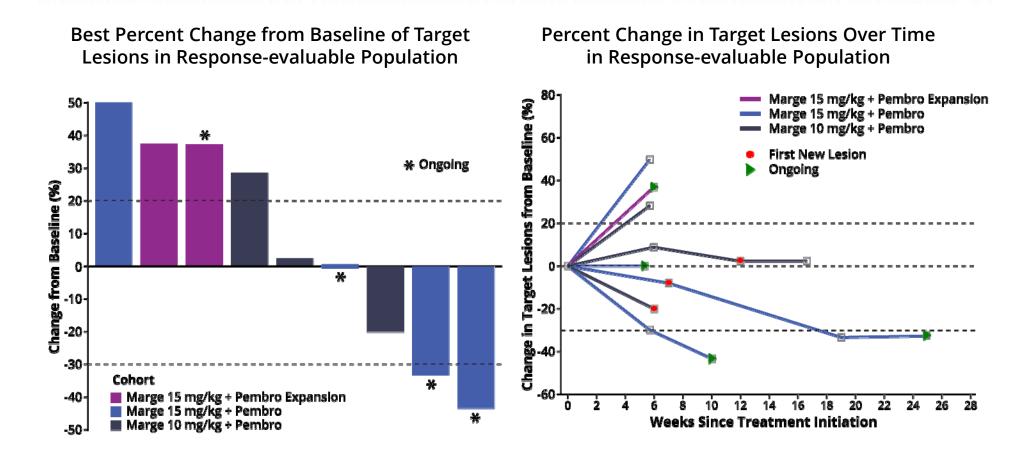

Sequential primary endpoints: Progression-Free Survival & Overall Survival:

PFS (N=257, HR=0.67, α=0.05, power=90%) OS (N=358, HR=0.75, α=0.05, power=80%)



Why Combine HER2 and Anti-PD-1 for Gastric Cancer?

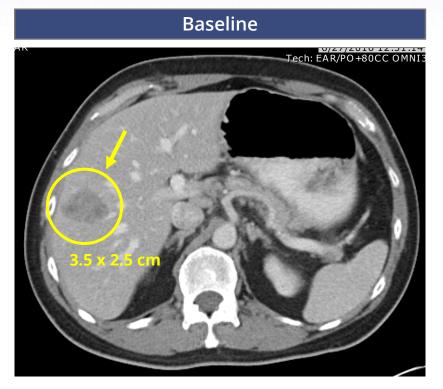
- HER2 is validated target in gastric cancer; trastuzumab is component of 1L SoC
- No HER2 SoC after 1L; existing therapy (chemo, ramucirumab) is sub-optimal
- Negative GATSBY trial with T-DM1 in 2L gastric cancer may highlight importance of immune-mediated mechanisms in clinical activity of anti-HER2 agents
- Checkpoint inhibitors are clinically active in patients with gastric cancer (ORR, OS)
- Clear non-clinical rationale for combining anti-HER2 directed therapy and I-O agents
- Synergistic antitumor activity using combination of anti-HER2 and anti-PD-1 antibodies in HER2+ murine mammary adenocarcinoma model (*Stagg, et al. PNAS, 2011*)



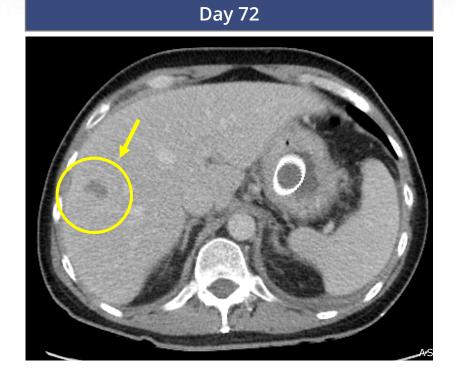
- Treatment
 - Pembrolizumab: Day 1 of every cycle
 - Exploring two dose levels for margetuximab: Day 1 of every cycle
- Inclusion/exclusion criteria
 - IHC HER2 2+ / 3+ or FISH-amplified with prior trastuzumab progression
 - Received \geq 1 prior line of chemotherapy treatment
 - No prior immunotherapy
- Endpoints
 - Primary: safety, tolerability and efficacy (as evaluated by ORR) of combo
 - Secondary: PFS, PFS-6, OS-6 / OS, Immunogenicity

Margetuximab + Pembrolizumab Initial Clinical Activity

Phase 1b/2 study in advanced/metastatic gastric & GEJ cancers



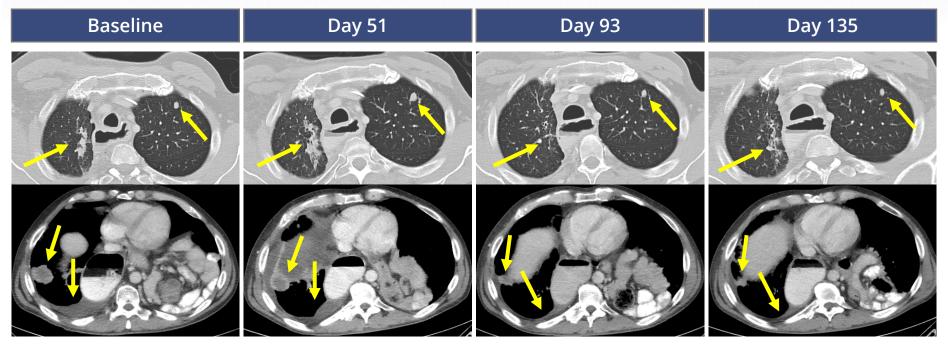
Note: December 1, 2016 data cutoff



Confirmed PR in Gastric Cancer: 50% Reduction

M+P combo case study #1: 50 y/o male w/metastatic HER2+ gastric cancer

- Patient had metastatic GEJ and gastric adenocarcinoma, with gastric cardia and liver lesions
- Progressed after prolonged 1L treatment with FOLFOX/trastuzumab followed by maintenance capecitabine/trastuzumab



- Confirmed PR with margetuximab + pembrolizumab combination (50% reduction)
- Later in course, experienced clinical deterioration, not felt to be candidate for treatment beyond progression, withdrawn from study

Confirmed irPR in Gastric Cancer: 30% Reduction

M+P combo case study #2: 50 y/o male w/metastatic HER2+ gastric cancer

- Patient had metastatic HER2+ GEJ/gastric adenocarcinoma with lesions in liver, lungs and supraclavicular LNs
- Progressed following 3 prior lines of therapy:
 - Carboplatin, taxol and radiotherapy
 - − Cisplatin, capecitabine and trastuzumab → maintenance trastuzumab
 - 5-FU and trastuzumab

- Confirmed irPR (**30% reduction**)
- Currently on Cycle 9 (well tolerated)

HER2 Franchise Summary

- Fc optimization designed to enable antitumor activity across FcyR genotypes
 - Enhanced antitumor activity compared to trastuzumab in ~80% of patients who are low affinity carriers (either V/F or F/F)
 - Enhanced ability to induce cell killing and secondary engagement of T-cell immunity
- If SOPHIA is successful, positioned to move into earlier lines of therapy
- Combo with anti-PD-1 could establish "chemo-free" treatment paradigm for advanced/metastatic gastric & GEJ cancers
- Follow-on programs, including CD137 x HER2 DART, to deliver tumor-specific immune modulation
- Upcoming milestones:
 - Complete gastric study enrollment in 2017
 - Complete SOPHIA enrollment in 2018

Today's Agenda

Welcome

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

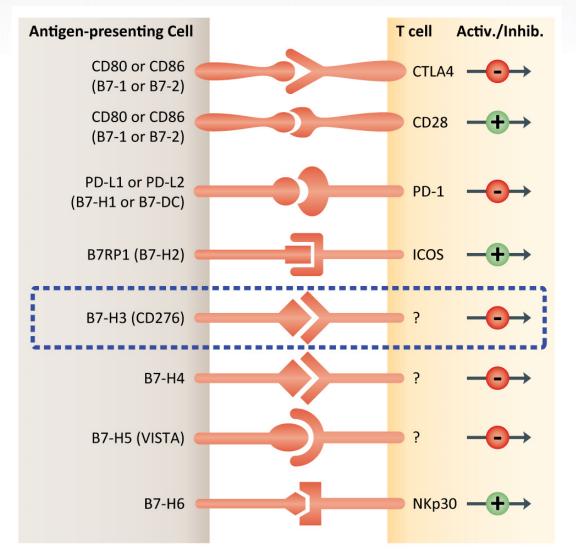
Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute


Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

B7-H3: Member of B7 Family of Immune Regulators

Immunosuppressive Role

- Crystal structure resolved: T-cell inhibitory domain mapped (Vigdorovich 2013)
- Expression on lung cancer cells and macrophages suppresses T-cell mediated antitumor immune response (*Chen 2013*)
- B7-H3 negatively regulates acute GVHD (Veenstra 2015)

Tumor Metabolism & Metastatic Role

- Enhances metastatic potential of melanoma cells (*Tekle 2012*)
- Promotes epithelial-mesenchymal transition and expression of CSC markers in colorectal cancer (*Jiang 2016*)
- Reprograms glucose metabolism in breast cancer (*Lim 2016*)

(see handout w/ updated bibliography of B7-H3 scientific references)

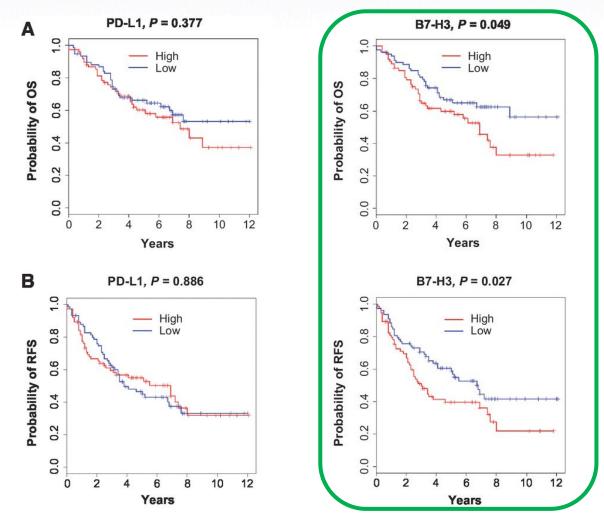
Adapted from Pardoll, et al., Nature, April 2012.

Confirmed High Penetrance in Broad Set of Solid Tumors

Minimal/no expression on normal tissues

	IHC Summary of Samples Screened			creened	
Fixed Tumor MicroArray	B7-H3 Positive		2	2+ or Above	
Potential Indications:	Potential Indications:				
Head and Neck	19/19	100%	19/19	100%	
Kidney Cancer	77/78	99%	75/78	96%	
Glioblastoma	65/66	98%	63/66	95%	
Thyroid Cancer	34/35	97%	33/35	94%	
Mesothelioma	41/44	93%	39/44	89%	
Melanoma	132/146	90%	94/146	64%	
Prostate Cancer	88/99	89%	51/99	52%	
Pancreas Cancer	69/78	88%	45/78	58%	
Bladder	134/156	86%	123/156	79%	
Lung Cancer	324/379	85%	300/379	79%	
Breast Cancer	189/249	76%	156/249	63%	
Ovarian Cancer	59/79	75%	36/79	46%	

Target expression on both tumor cells and tumor vasculature

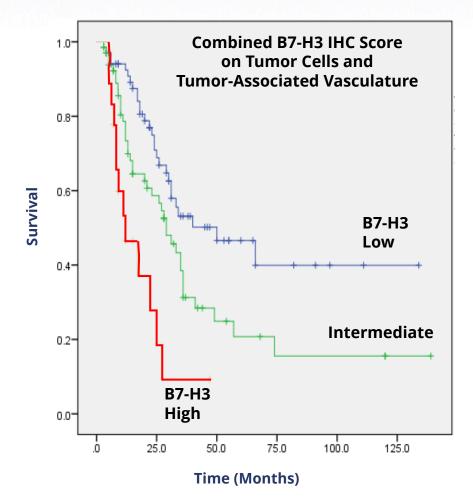


B7-H3 Identified as Prognostic Lung Cancer Biomarker

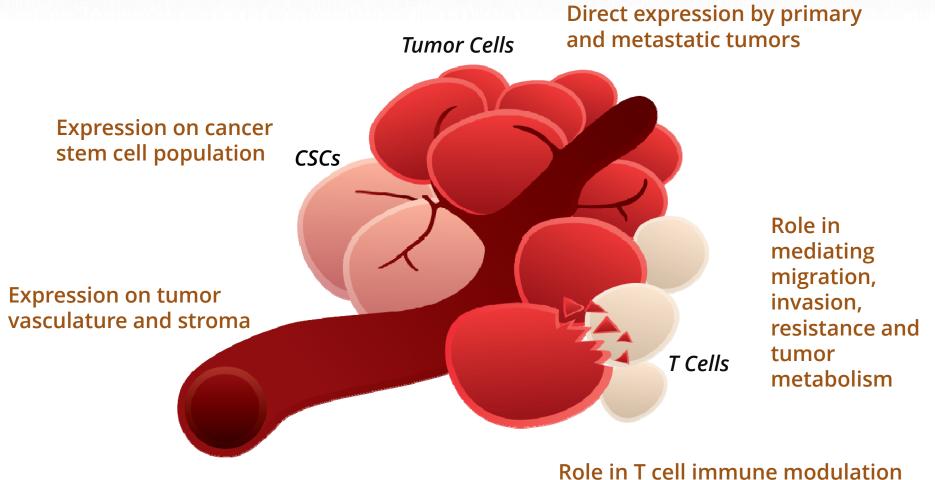
B7-H3 expression correlates with poor OS and RFS in NSCLC

Analyses of >450 lung adenocarcinoma patients revealed enhanced expression of checkpoint molecules (PD-1, PD-L1, PD-L2, B7-H3, CTLA-4, LAG-3, BTLA and TIM-3) in "mesenchymal" lung adenocarcinoma

Among checkpoints, only B7-H3 demonstrates correlation with overall survival and relapse-free survival across lung adenocarcinoma


"Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple checkpoints on lung adenocarcinoma"; Lou, Y, et al.; Clin Cancer Res. 2016 Jul 15;22(14):3630-42.

B7-H3 Expression Level Correlates w/ Patient Outcome


IHC analyses of 154 pancreatic ductal adenocarcinoma (PDAC) patients

- High statistical inverse correlation between B7-H3 expression and patient survival
- Consistent with prior studies, lower CD8 T-cell infiltration also correlates with poorer patient outcome

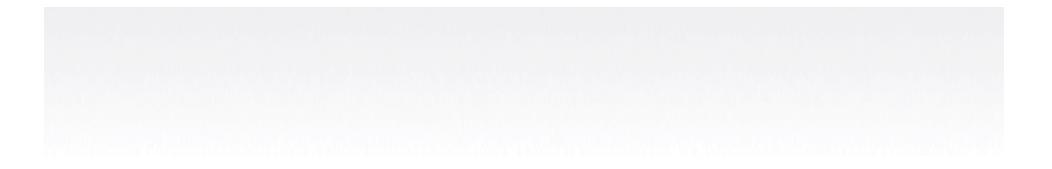
B7-H3 membrane expression determined using diagnostic test supporting enoblituzumab and MGD009 clinical studies; Ongoing collaboration with Mass General Hospital (Ferrone)

Rationale for Targeting B7-H3 in Cancer

Tumor Vasculature

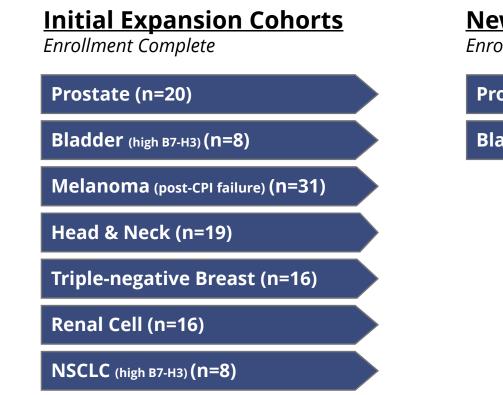
Comprehensive B7-H3 Franchise

MacroGenics retains global rights


	Enoblituzumab (MGA271)	MGD009	MGC018
Candidate	• Fc-optimized mAb	 B7-H3 x CD3 DART (Fc-bearing) 	 B7-H3 Antibody-Drug Conjugate
Potential MoA	 Direct tumor killing Adaptive T-cell immune response enhancement 	 Recruitment and expansion of T cells Potent redirection of T cells to kill tumor cells 	 Direct tumor killing Leverage Synthon's drug-linker
Current Development Status	 Monotherapy Ph. 1 trial (7 solid tumor types) Combo studies 	• Phase 1 dose escalation	• 2018 IND planned

Enoblituzumab: "First-in-class," Fc-Optimized Anti-B7-H3 mAb

Candidate	• Humanized, Fc-optimized anti-B7-H3 mAb
Opportunity	 Very large commercial opportunity for targeting B7-H3, given vast expression across many different solid tumor types
Targeted Indications	 Exploring seven solid tumor indications
Development	 Monotherapy Ph. 1 study Combination studies ongoing with ipilimumab, pembrolizumab
Partner	MacroGenics retains global rights



Enoblituzumab Monotherapy

Phase 1 Monotherapy Study: Seven Solid Tumor Types

Tumor-specific expansion cohorts

New Expansion Cohorts

Enrollment Started October 2016

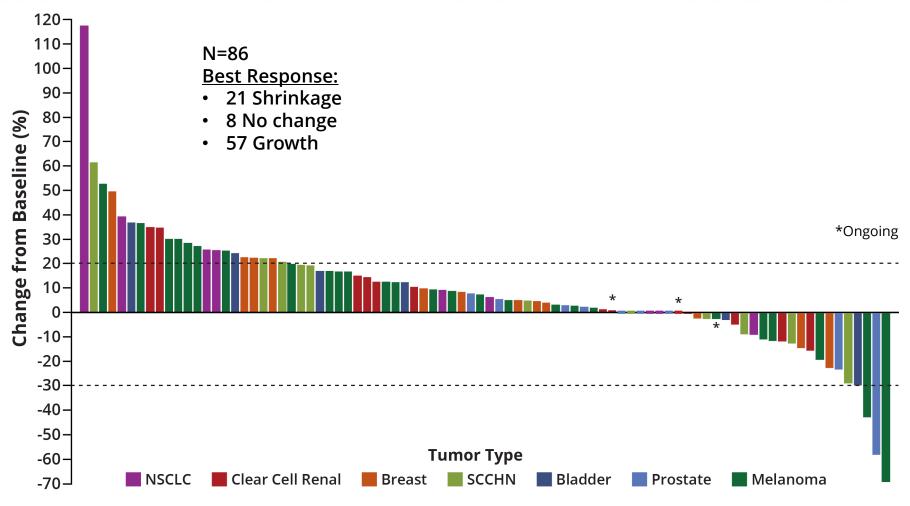
Prostate (n=16)

Bladder (n=16)

Note: Enoblituzumab Phase 1 monotherapy study; October 17, 2016 data cutoff

Favorable Safety Profile in Phase 1 Study

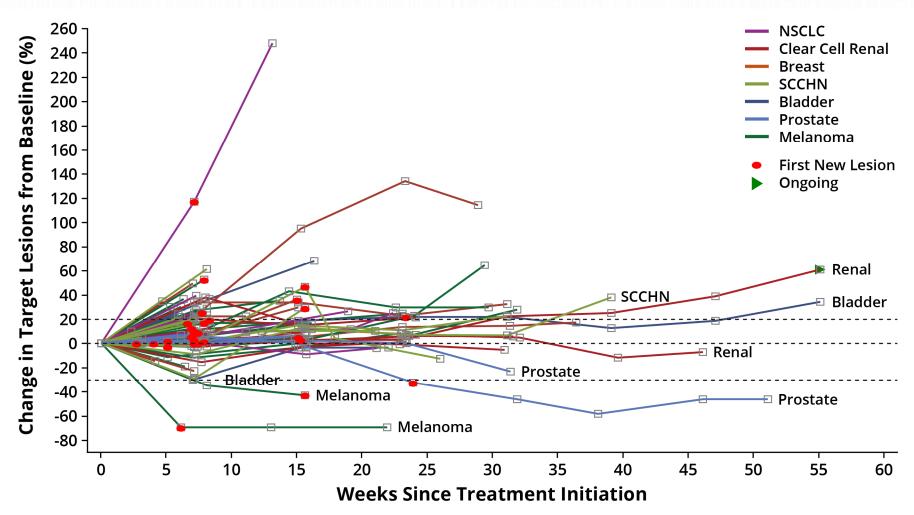
No severe immune-related AEs (15 mg/kg)


	No. (%) of Patients	
Drug-Related Adverse Event (≥ 10% of Patients)	All Grades (N=130)	Grades 3-4 (N=130)
Any adverse event	125 (80)	11 (9)
Infusion-related reaction	57 (37)	4 (3)
Fatigue	51 (33)	2 (2)
Nausea	31 (20)	0
Vomiting	20 (13)	0
Chills	23 (15)	0

Note: Enoblituzumab Phase 1 monotherapy study; October 17, 2016 data cutoff

Tumor Reduction in Heavily Pretreated Patients

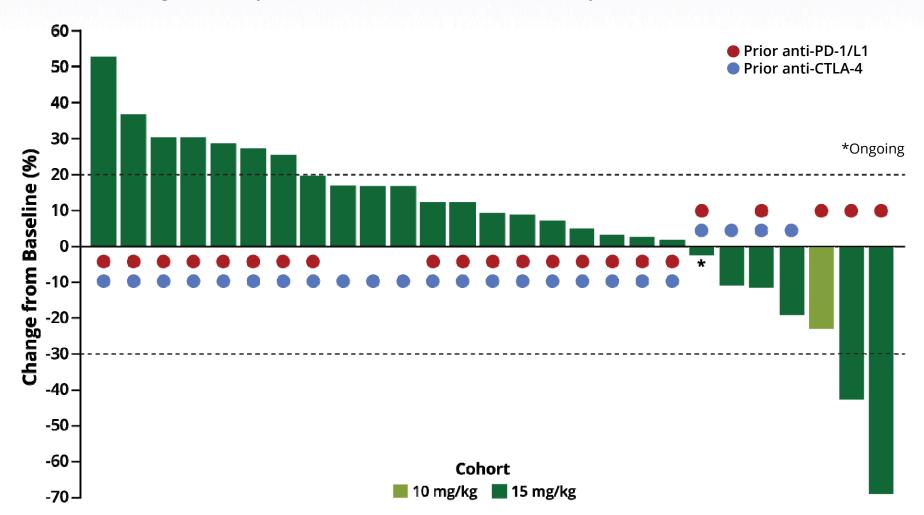
Best % change in response-evaluable tumor-specific cohorts (15 mg/kg)



Note: Enoblituzumab Phase 1 monotherapy study; October 17, 2016 data cutoff

Multiple Patients with Durable Tumor Reductions

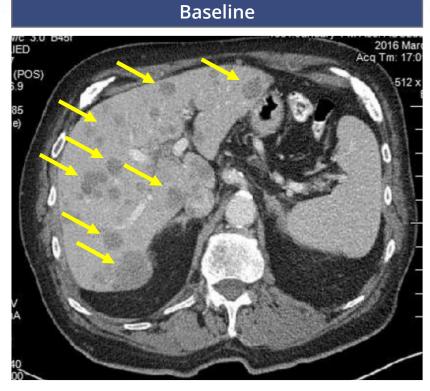
Best % change in response-evaluable tumor-specific cohorts (15 mg/kg)



Note: Enoblituzumab Phase 1 monotherapy study; October 17, 2016 data cutoff

Activity in Post-Checkpoint Melanoma Patients

Best % change in response-evaluable melanoma patients

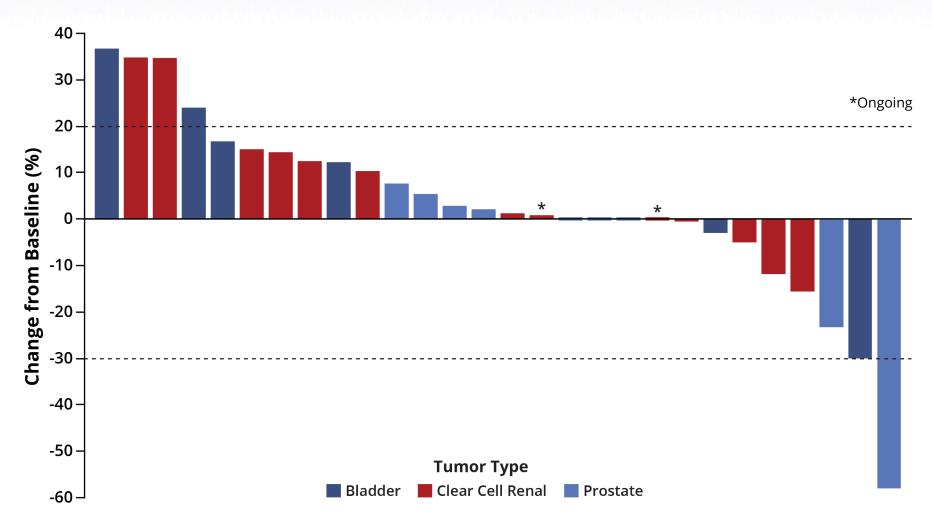


Note: Enoblituzumab Phase 1 monotherapy study; October 17, 2016 data cutoff

Rapid Reduction in Multiple Tumor Lesions

Enoblituzumab case study #1: 87 y/o man w/ metastatic melanoma

- Melanoma patient had liver and bone metastases
- Had progressed on nivolumab
 - Treated Oct. 2015 to Jan. 2016
 - Only prior systemic cancer therapy

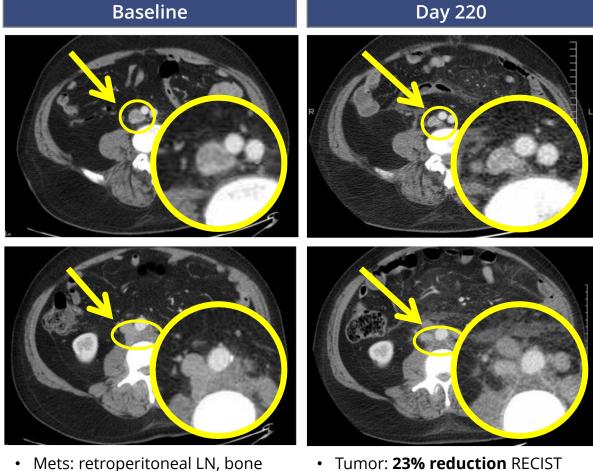


- Enrolled in enoblituzumab monotherapy (Mar. 2016)
- Rapid reduction in multiple tumor lesions
 - Cycle 1: 35% shrinkage (w/smaller bone lesions)
 - Cycle 2: 42% shrinkage
- MRI showed small brain mets (no baseline MRI)
 - Gamma knife brain radiation

Activity in Urological Malignancies (Monotherapy)

Best % change in tumor burden in response-evaluable patients (15 mg/kg)

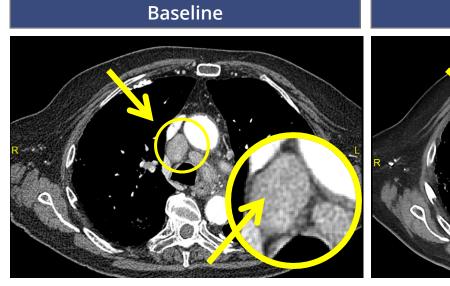
Note: Enoblituzumab Phase 1 monotherapy study; October 17, 2016 data cutoff



Selected Prostate Patients with Antitumor Activity

Enoblituzumab case study #1: 65 y/o man with prostate cancer

Aorto-Caval Lymph Node


- Previous therapy: sipuleucel-T, abiraterone, enzalutamide, radium 223, taxotere
- Tumor: 23% reduction RECIST
- PSA: 46% decrease
- Remained on therapy for 13 mos.

Selected Prostate Patients with Antitumor Activity

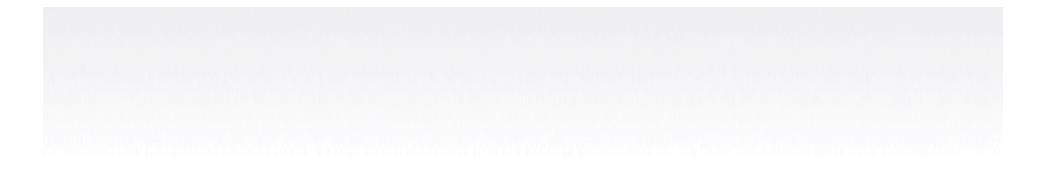
Enoblituzumab case study #2: 87 y/o man with prostate cancer

Right Paratracheal Lymph Node

- Mets: mediastinal and retroperitoneal LN, bone, porta-caval LN
- Previous therapy: radiation

Day 290

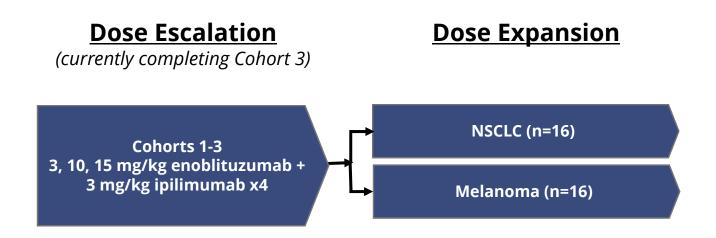
• Tumor: 58% reduction RECIST


• PSA: 51% decrease

Key Enoblituzumab Monotherapy Takeaways

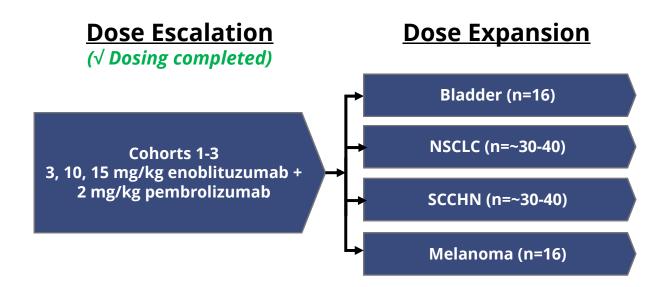
- Well tolerated at doses of up to 15 mg/kg q week
 - Safety profile supports combinability with various other molecules, including checkpoint inhibitors
- Evidence of modulation of T-cell function, including induction of cytokine/chemokine production and enhanced clonality of T-cell repertoire
- Most promising monotherapy activity observed in prostate, bladder and post-checkpoint melanoma
 - Bladder and prostate cancer enrollment ongoing
 - Melanoma being further evaluated as monotherapy as well as in combo with anti-PD-1 or anti-CTLA-4

Enoblituzumab Combination Therapy


Rationale for Enoblituzumab Combination Studies

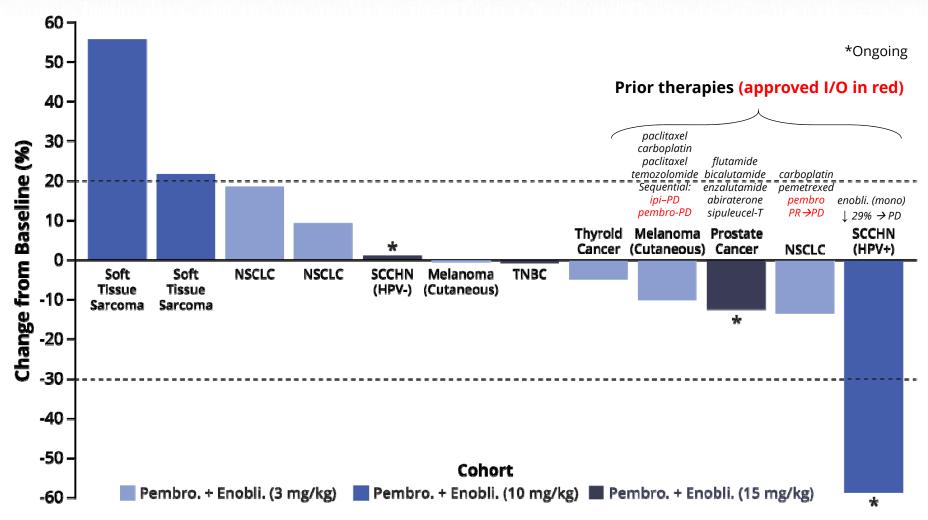
- Coordinate engagement of innate and adaptive immunity by combining agents that modulate T cell function and potentiate ADCC
- Combinations of two molecules targeting B7 family members can synergize clinically (e.g., anti-CTLA-4/PD-1)
- Anticipate easier combinability with either anti-CTLA-4 or anti-PD-1
 - Limited B7-H3 expression on normal cells appears to limit disruption of self tolerance and trigger of immune-related AEs (irAEs) by enoblituzumab
 - Improved risk-benefit compared to anti-CTLA-4/anti-PD-1 combination

Enoblituzumab + Anti-CTLA-4 Combination Study


Anticipate initiation of dose expansion in 2017

Enoblituzumab + Anti-PD-1 Combination Study

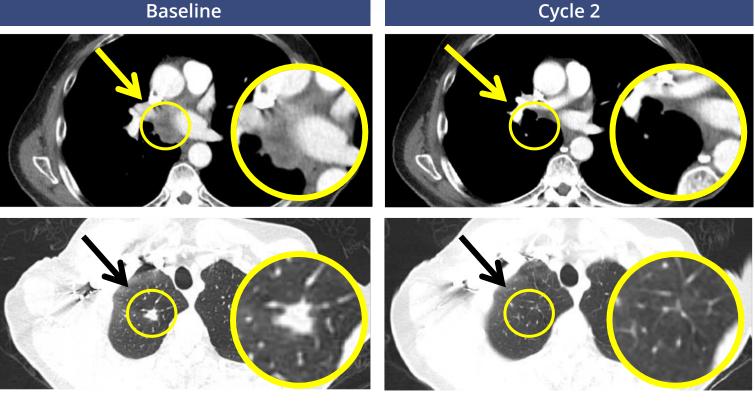
Dose expansion ongoing


Observations to date

- Manageable AEs
- Initial signs of antitumor activity
- DLT period: first 6 weeks of dosing

Initial Signs of Activity in Heavily Pretreated Patients

Best % change in tumor burden in response-evaluable patients


Note: Enoblituzumab + anti-PD-1 (pembrolizumab) combination study; October 17, 2016 data cutoff

Enoblituzumab + Anti-PD-1: Confirmed PR in SCCHN

Case study: 70 y/o man w/ unresectable locally adv./metastatic HPV+ SCCHN

Mediastinal Lymph Node

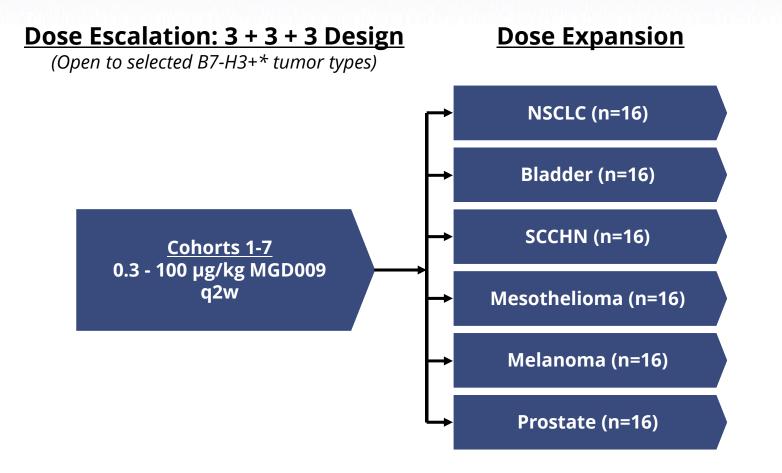
RUL Lung Mass

- Disease in submandibular lymph nodes, bone, lung & mediastinum
- Only prior systemic cancer therapy was enoblituzumab (mono)
 - Rapid tumor reduction of 29.2% on Cycle 1 w/ subsequent regrowth / PD
- 10 mg/kg enoblituzumab qW + 2 mg/kg / pembrolizumab q3W (dose esc. Cohort #2)
- Confirmed PR after 2 cycles
- Rapid tumor reduction of 45% on Cycle 1
- Subsequent further reduction to 58%

Enoblituzumab: Advancing Combination Therapy

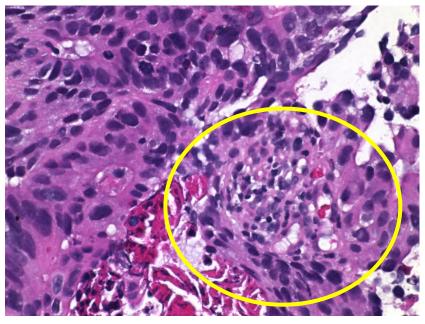
- Combine administration of enoblituzumab with checkpoint inhibitors to achieve additive or synergistic antitumor activity
- Identify enoblituzumab combination with clinical activity in tumors where anti-CTLA-4 or anti-PD-1 have limited activity
- Define enoblituzumab-based combination regimens that are superior to anti-CTLA-4 or anti-PD-1 alone in tumor types where these agents are active
- Identify enoblituzumab-based regimens that benchmark favorably against existing combos (i.e., anti-CTLA-4/anti-PD-1) safety, efficacy or both

MGD009: Expanding B7-H3 Franchise

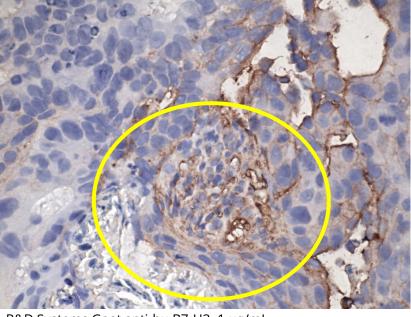

Candidate	•	Humanized, Fc-bearing B7-H3 x CD3 DART	
-----------	---	--	--

Opportunity	 Large opportunity (vast expression across different tumors types) B7-H3 expression correlated with disease severity and outcome
Function/MoA	 Redirected T-cell killing Recruitment and activation of T cells, irrespective of TCR specificity and MHC restriction Potential expansion of tumor-specific T cells MoA complementary to enoblituzumab: Fc-mediated killing & priming for optimized T-cell response
Indications	NSCLC, melanoma, head & neck, mesothelioma, bladder, others
Development	 Phase 1 study ongoing (dose escalation)
Partner	MacroGenics retains global rights

MGD009 Phase 1 Trial Dose Escalation Ongoing


* B7-H3 positivity defined as > 10% tumor, ≥ 2+ and/or > 25% of vasculature positive

Lymphocytes Associated w/ Areas of B7-H3 Expression

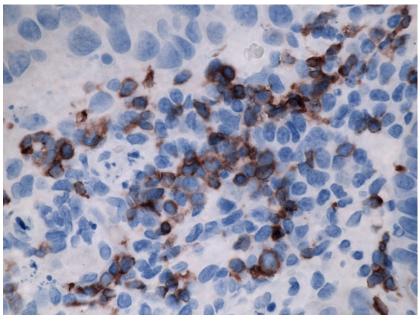

Tumor biopsy in MGD009 patient (dosed 1 μg/kg)

H&E Staining

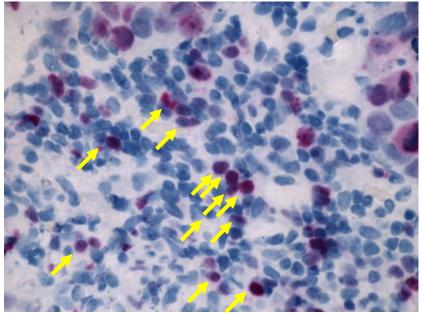
- Glandular architecture
- Lymphocytes within tumor region
- Non-viable tumor cells associated with inflammatory cell infiltration

R&D Systems Goat anti-hu B7-H3, 1 µg/mL

 B7-H3 positive tumor cells surrounded by lymphocytes



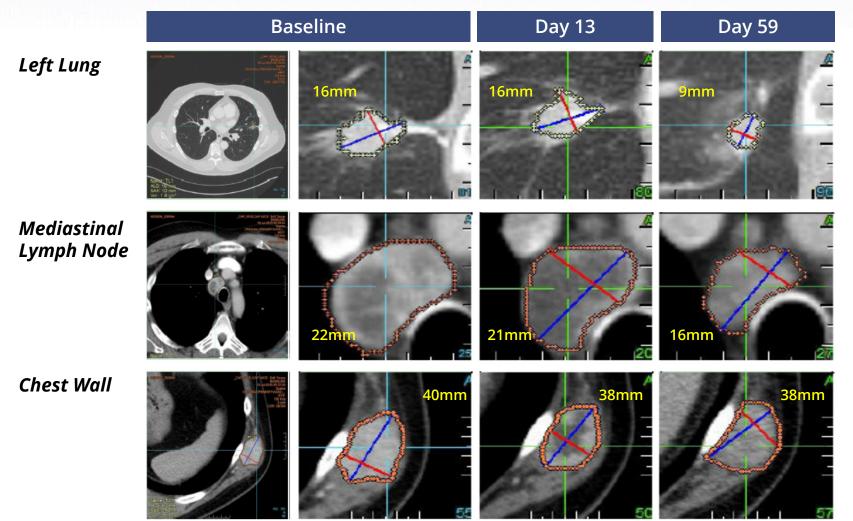
T-cell Recruitment and Proliferation at Tumor Site


Tumor biopsy in MGD009 patient (dosed 1 μg/kg)

CD3 Staining

 Lymphocyte infiltration (brown) adjacent to tumor cells

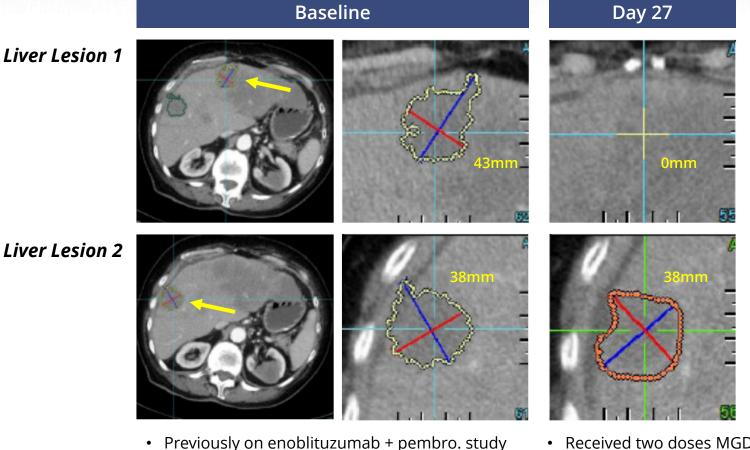
 Subset of infiltrating lymphocytes (some indicated with arrows) are proliferating (red)


MGD009 Dose Escalation: Antitumor Activity in RCC

Case study #1: 60 y/o man with metastatic RCC

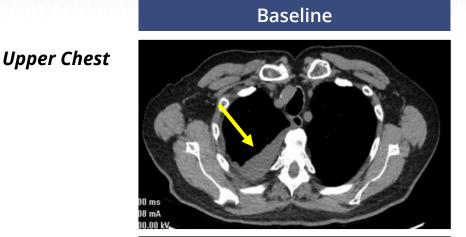
- Patient had metastases in brain, mediastinal LN, lungs, liver and subcutaneous chest wall
- Progression on multiple previous systemic therapies:
 - IL-2, sorafenib, temsirolimus, nivolumab and sunitinib
- After 1^{st} dose of MGD009 at 10 µg/kg
 - Transient infusion reaction considered DLT (fever/chills/rash, transient increase in liver and renal function tests)
- Rapid antitumor activity observed 2 weeks after 1st dose
 - Subcutaneous chest lesion palpably softer vs. baseline (noticed within first week)
 - Decreased vascularity of multiple lesions and lymph nodes with central necrosis
 - 4% Tumor reduction on CT scan
- Treatment continued x 1 dose: **tumor reduction 19%**
 - Patient required brain radiation for new brain disease: treatment discontinued

MGD009 Dose Escalation: Antitumor Activity in RCC

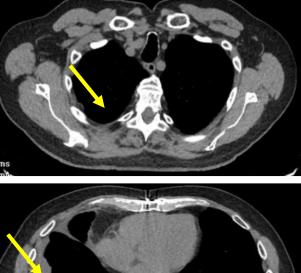

Case study #1: 60 y/o man with metastatic RCC

MGD009 Dose Escalation: Antitumor Activity in TNBC

Case study #2: 78 y/o woman with metastatic TNBC to lung & liver (dosed 10 µg/kg)



- Stable disease, but discontinued after 1st Cycle
- · Secondary to previous medical conditions/ low-grade infusion reactions
- Received two doses MGD009
- Discontinued following infusion reaction, transient transaminase elevation
- Rapid 20% tumor reduction observed



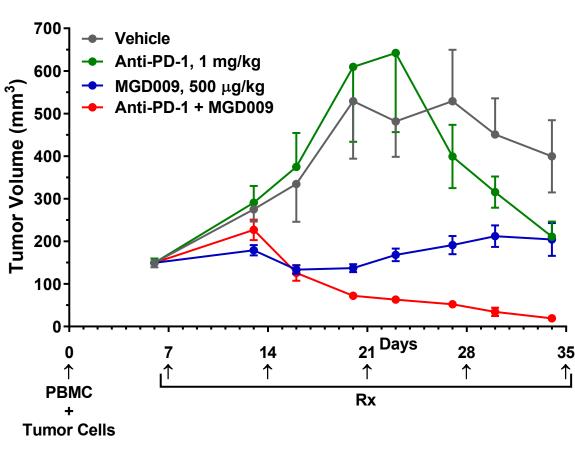
MGD009 Dose Escalation: Antitumor Activity in Mesothelioma

Case study #3: 82 y/o man with pleural mesothelioma (dosed 10 µg/kg)

Day 45

Mid Chest

- · Pleural tumors with large loculated effusion
- Progression on cisplatin /pemetrexed


- Rapid antitumor activity after 1st Cycle
 - Resolution of loculated effusion
 - Tumor stable after 1st dose
 - Symptomatic improvement
- Continues on 2nd Cycle of treatment

Anti-PD-1 Enhances MGD009-mediated T-cell Killing in Vivo

Detroit-562 Cells (H&N SCC)

Opportunity for combinatorial clinical strategy in solid tumors

NSG MHC-I^{-/-} mice, 5x10⁶ tumor cells ID, PBMC, 10⁶ cells IP

MGD009: Advancing DART Molecule in Solid Tumors

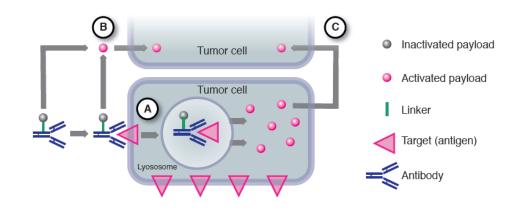
- Dose escalation ongoing in Cohort #4 (10 μg/kg)
 - Manageable AEs
 - Initial signs of antitumor activity observed
- MoA complementary to enoblituzumab
 - Enoblituzumab promotes Fc-mediated killing by NK and macrophages, primes for optimized T cell response
 - MGD009 recruits and activates T cells (irrespective of TCR specificity) with potential expansion of tumor-specific T cells
- Plans for future combination studies with anti-PD-1

MGC018: B7-H3 Antibody-Drug Conjugate

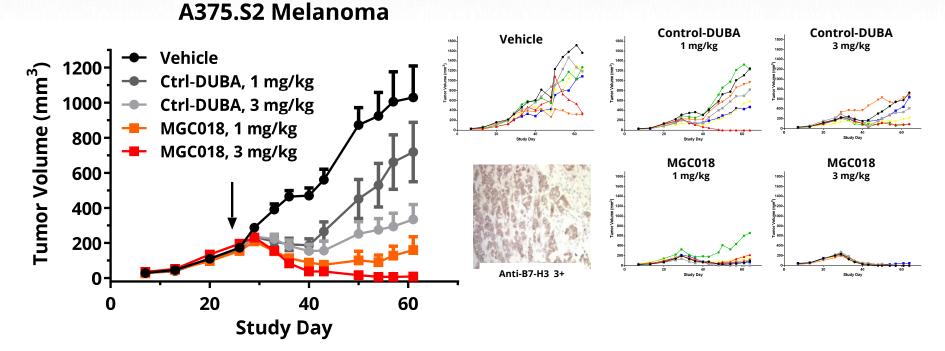
Candidate	 Humanized B7-H3 antibody drug conjugate Alternate epitope, non-overlapping with enoblituzumab and MGD009 Drug-linker licensed from Synthon Biopharmaceuticals
Opportunity	 Complementary mechanism for targeting B7-H3 Targeted payload delivery Potential for de-bulking and combination strategies Large opportunity given broad B7-H3 expression across tumor types
Function/MoA	 Duocarmycin-based payload with cleavable peptide linker Highly potent DNA-damaging agent Targets non-dividing cancer stem cells as well as dividing tumor cells Not subject to multi-drug resistance (MDR)
Status	 IND targeted for 2018 Favorable potency in B7-H3 xenografts Acceptable non-human primate toxicology profile
Partner	MacroGenics retains global rights

Duocarmycin-based Linker Drug Payload

vc-seco-DUocarmycin-hydroxyBenzamide Azaindole (DUBA)


- Fully synthetic, cell-cycle independent, DNA alkylating agent
- Retain activity in MDR lines
- Cleavable peptide linker
 - Facilitates bystander effect
- Clinical-stage
 - Synthon's SYD985 in Ph. 1
 - Anti-HER2-DUBA

Active Toxin (DUBA)


Mode of Action

- Uptake of ADC by internalization and intracellular release of payload (A)
- · Proteolytic cleavage of payload in tumor microenvironment (B)
- · Diffusion of active payload to neighboring tumor cells (C)

Synthon

MGC018: Potent Activity in Xenograft Models

Treatment	Dose qW (mg/kg)	Tumor Control Ratio (%)	Complete Response
Control mAb-DUBA	1	70	1/7
Control mAb-DUBA	3	33	0/7
MGC018	1	16	1/7
MGC018	3	1	5/7

61

B7-H3 Franchise Summary

- Broad target expression on most solid tumors
- Ideal target for multiple mechanisms of action
 - Fc-mediated killing and antigen presentation (enoblituzumab)
 - T-cell re-targeting (MGD009)
 - ADC (MGC018)
 - Combination therapy
- Encouraging data from ongoing enoblituzumab and MGD009 trials
 - Acceptable safety profile to date
 - Initial antitumor activity
 - Rationale for combination with anti-PD-1
- Upcoming milestones:
 - Enoblituzumab 2017
 - Complete enrollment in new expansion cohorts for bladder and prostate cancer
 - Define future development plans based on monotherapy and combination study results
 - *MGD009:* enroll patients in expansion cohorts in 2017
 - MGC018 (ADC): submit IND in 2018

Today's Agenda

Welcome

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

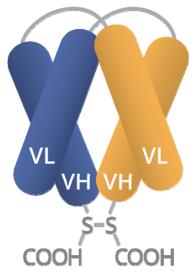
F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

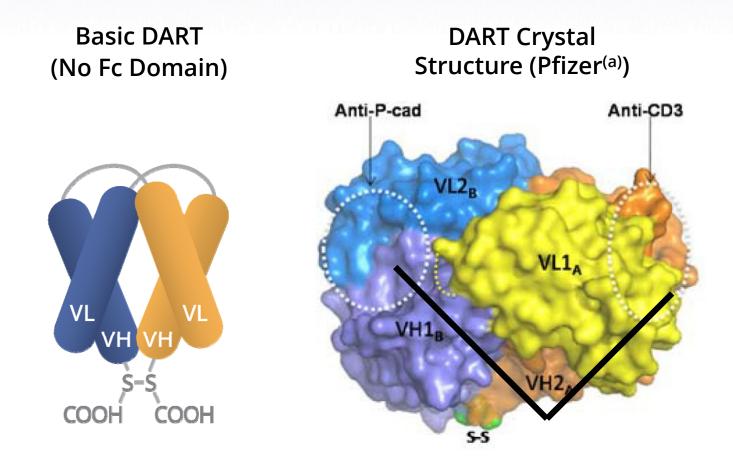
Wrap-up / Q&A

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

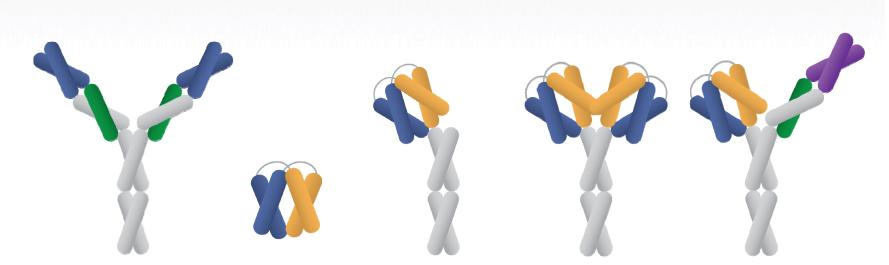

DART Platform

DART: The Most Advanced Bispecific Platform

- Robust, flexible bispecific platform
 - Multiple applications across different disease areas
 - Predictable manufacturability
 - Long-term structural stability
 - Ability to tailor half-life and valency
- Six DART molecules in clinical testing⁽¹⁾
- Multiple pre-clinical programs advancing
- Validating DART collaborators



(1) Two clinical DART molecules are being developed by collaboration partners (MGD011/duvortuxizumab by Janssen and PF-06671008 by Pfizer).


Basic DART Structure: Asymmetry of Binding Domain

(a) Crystallography of Pfizer's P-Cadherin x CD3 DART molecule. The two antigen binding sites (shown by red dot circles) are separated from each other by approximately 30 Å and are facing away from each other at an angle of approximately 90°. Source: Root, et al., Antibodies 2016, 5, 6; March 4, 2016.

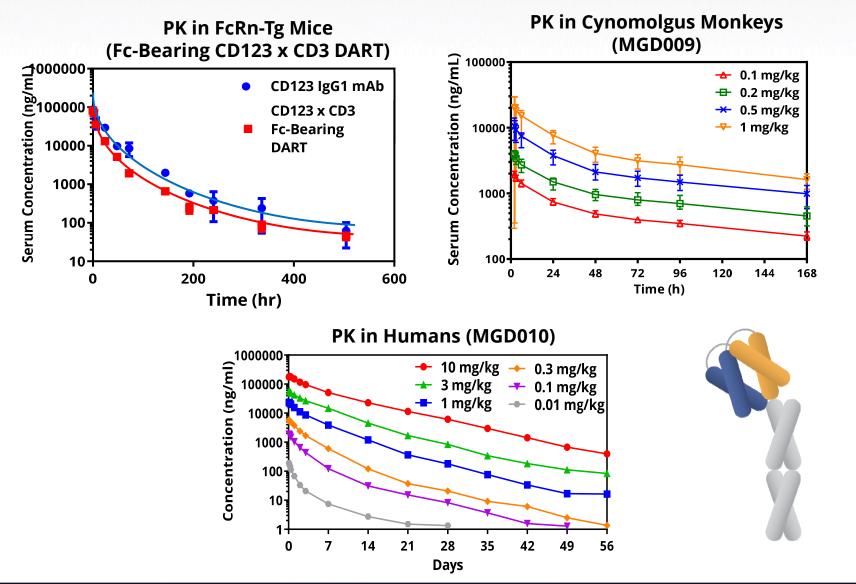
Formats Tailored for Different Applications

Construct	mAb	DART	DART	DART	TRIDENT
Specificity	Monospecific	Bispecific	Bispecific	Bispecific	Tri-specific
Valency	Bivalent	Bivalent	Bivalent	Tetravalent	Trivalent
Half-life	Days to weeks	Hours	Days to weeks	Days to weeks	Days to weeks
Candidates	margetuximab, enoblituzumab, MGA012	MGD006	MGD007, MGD009, MGD010, MGD011 (duvortuxizumab), MGD014, PF-06671008	MGD013	Multiple programs in pre-clinical development

DART: Leading Bispecific Platform

			Characteristics of Clinical Candidate(s)			
Technology Originator (Platform)	Construct	# of Clinical Programs	Potential for IgG-like Half-life	Cis-binding Modality	Redirected T-cell Killing Modality	Monovalent Binding to CD3
MacroGenics (DART)	Diabody	6	\checkmark	\checkmark	\checkmark	\checkmark
Roche (CrossMAb)	lg-Like	6	\checkmark	\checkmark	\checkmark	\checkmark
Genmab (DuoBody®)	lg-Like	2	\checkmark	\checkmark	×	-
Merus (Biclonics®)	lg-Like	2	\checkmark	\checkmark	\checkmark	\checkmark
Trion (Triomab®)	lg-Like	1	\checkmark	×	\checkmark	\checkmark
Oncomed (BiMab™)	lg-Like	1	\checkmark	\checkmark	×	-
Regeneron	lg-Like	1	\checkmark	×	\checkmark	\checkmark
AbbVie (DVD-Ig™)	Dual-Ig	2	\checkmark	\checkmark	×	-
Sanofi	Dual-Ig	1	\checkmark	\checkmark	×	-
Amgen (BiTE®)	scFv-Based	6	×	×	\checkmark	\checkmark
Affimed (TandAb®)	scFv-Based	2	×	×	\checkmark	×
Eli Lilly	lgG + scFv	2	\checkmark	\checkmark	×	-
Xencor	lgG + scFv	1	\checkmark	×	\checkmark	\checkmark
Aptevo (ADAPTIR®)	scFv-Based	1	\checkmark	×	\checkmark	×
Merrimack	lgG + scFv	1	\checkmark	\checkmark	×	-
Immunocore (ImmTAC)	TCR + scFv	1	×	×	\checkmark	\checkmark
Ablynx (Nanobodies®)	Alt. Scaffold	1	\checkmark	\checkmark	×	-

* Based on available public information as of December 5, 2016. Excludes in-licensed and inactive programs.


Key Attributes of Different Bispecific Platforms

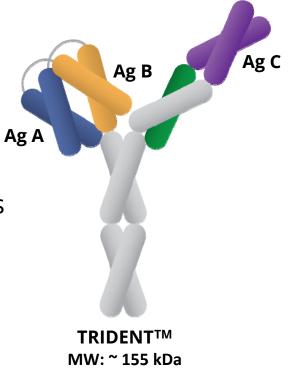
	DART	lg-Like	scFv-based
Ease of Manufacturing	Standard mAb platform	More complex CMC	Unpredictable
Stability Against Aggregation	Stable	Stable	Unstable (domain exchange)
Valency Flexibility	Customizable (2x or 4x)	Fixed 2x	Feasible, but complex
Half-life Extension	Customizable (short to IgG-like)	IgG-like	Feasible, but complex
High Potency			
Tri-specific Variant	TRIDENT (fully customizable)	Unavailable	Feasible, but complex
"Plug-and-play" w/ Virtually Any Fv Pair	Highly predictable	Less predictable (for some)	Unpredictable

Fc Domain Extends DART Half-Life

Established Platform for DART Manufacturing

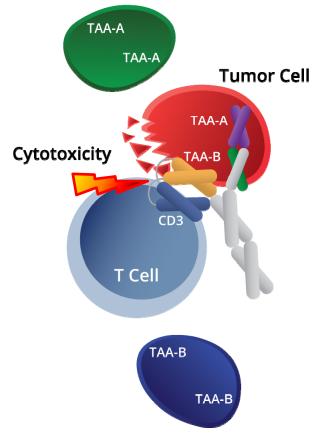
16 GMP lots across 7 distinct molecules at MacroGenics

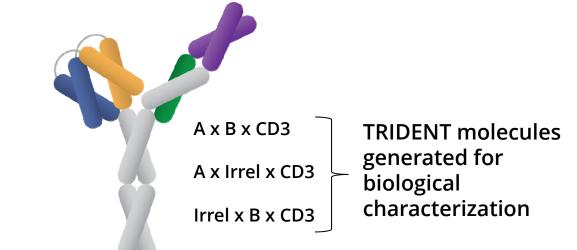
- 500 Liter single-use bioreactors
 - Commercially available media and feeds
 - Scalable performance from Development (2L, 10L, 50L) to GMP (500L)
- Standard downstream unit operations
- Current titer range = 1.3 3.7 g/L
- Drug Product typically stored as liquid at 2-8 °C
 - Earliest lots > three years old
- Successful tech transfer to multiple pharma partners



TRIDENT Platform: Extending Multispecific Capability

Customizable trispecific platform

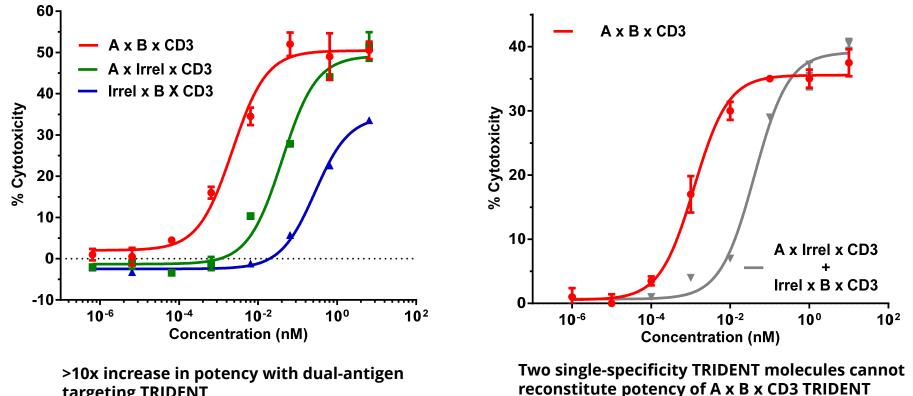

- Recognition of two or three separate antigens
- Ability to independently control valency of individual targets
- Enhanced potency and/or selectivity via bi-epitopic target recognition plus effector arm
- Selective recruitment of subsets of effector cells


Dual-Antigen Recognition for Increased Tumor Selectivity

Dual Cancer Antigen Targeting

Concept: Targeting of two cancer antigens coexpressed on tumor cells (e.g., Targets A and B) but displaying mutually exclusive normal tissue expression provides opportunity to increase therapeutic window

Validation Approach: TRIDENT molecules incorporating single or dual cancer antigen specificity and an anti-CD3 targeting arm were evaluated for relative efficacy in redirected T-cell killing



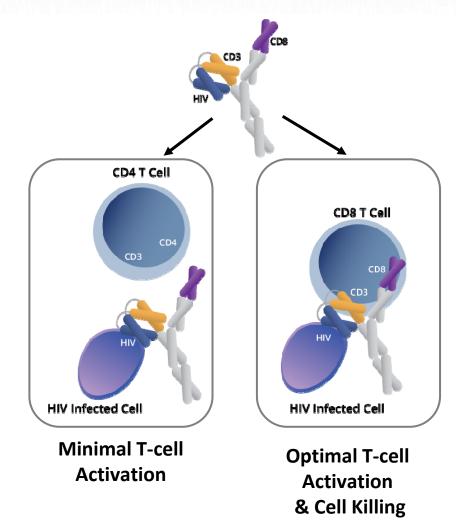
TAA = Tumor-associated antigen

TRIDENT-Enhanced CTL Activity via Dual Cancer Ag Recognition

Lysis of Target Cells Expressing A & B Antigens

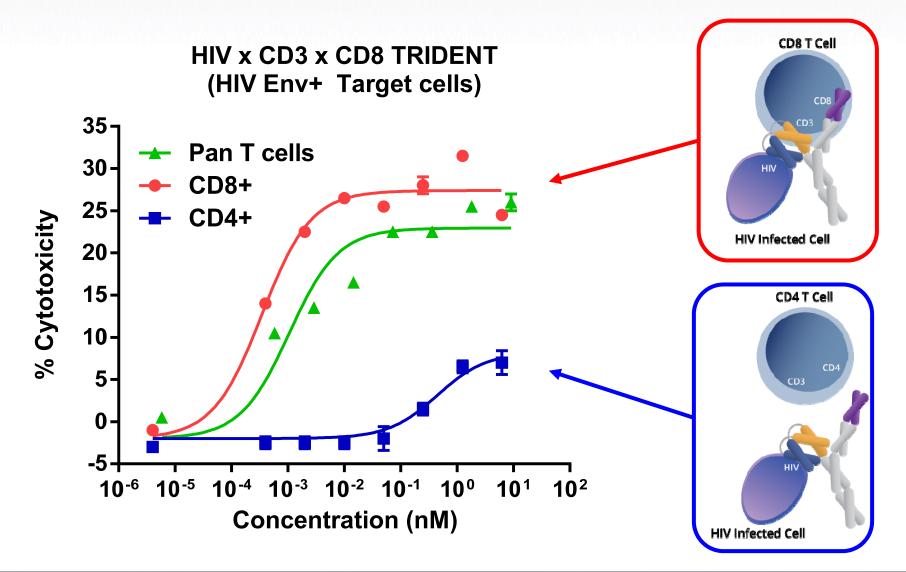
targeting TRIDENT

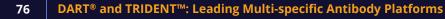
Effectors = T-cells; E:T = 10:1 or 1:1; Cytotoxicty based on LDH Release Assay


Preferential Engagement of CD8 Killer T Cells

Hypothesis:

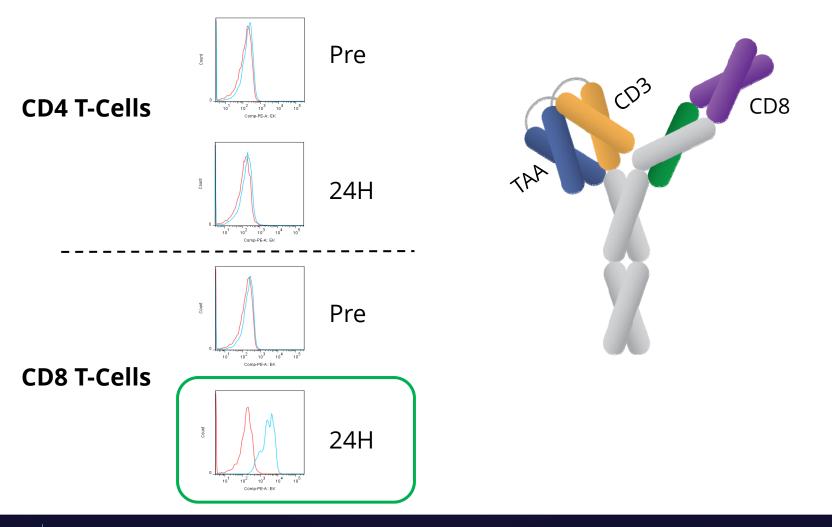
 Preferential recruitment and activation of CD8 T cells to enhance potency of redirected killing and reduce cytokine release


Approach:

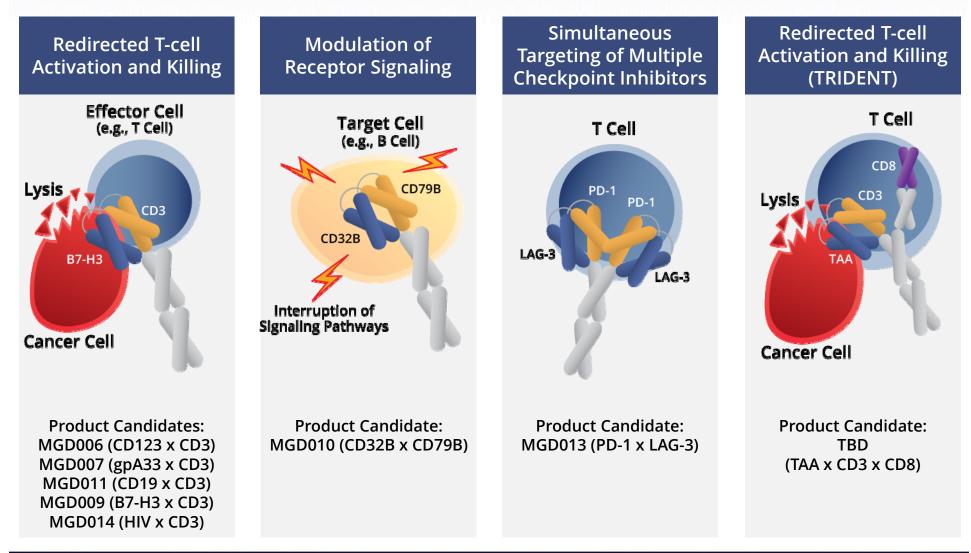

- Combine anti-CD8 with anti-CD3 and HIV-targeting arm in same molecule
- Evaluate TRIDENT vs. DART activity in killing assay

OGENICS

HIV x CD3 x CD8 TRIDENT: Enhanced CD8-mediated Killing



TAA x CD3 x CD8 TRIDENT Binds CD8 Killer T Cells In Vivo


Flow cytometry analysis of TRIDENT-treated cynomolgus monkeys

DART & TRIDENT: Designed for Broad Range of Modalities

Significant advantage over other multi-specific technologies

Today's Agenda

Welcome

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

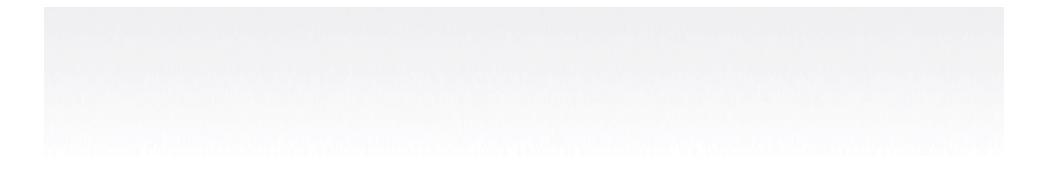
F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

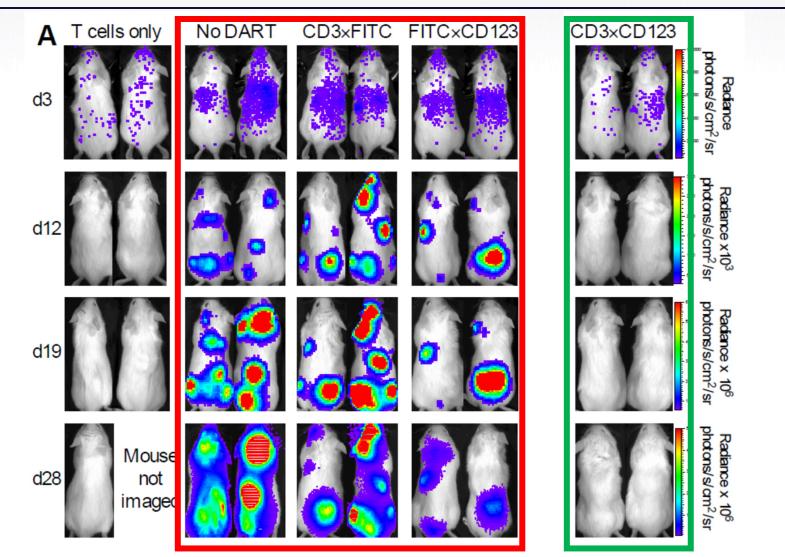

Six DART Molecules in Phase 1 Development

Product Candidate	MGD006	MGD007	MGD011	MGD009	PF-06671008	MGD010
Targets	CD123 x CD3 <i>(S80880)</i>	gpA33 x CD3	CD19 x CD3 (duvortuxizumab)	B7-H3 x CD3	P-cadh. x CD3	CD32B x CD79B
МоА	Redirected T-Cell Killing				Signal Modulation	
Current Dosing	Continuous IV	q3W	q2W	q2W	Undisclosed	Expected weekly or longer
Indications	AML, MDS	Colorectal cancer	B-cell heme malignancies	Solid tumors	Solid tumors	Autoimmune disorders
Our Commercial Rights	North America, Japan, Korea, India	North America, Japan, Korea, India	U.S. Co- promote	Worldwide	Royalties/ Milestones	Worldwide
Partner	Servier	Servier (Option)	Janssen	—	Pfizer	—
Data Pres.	ASH 2013, <i>Sci Transl Med</i> 2015	AACR 2014	ASH 2014	Keystone Symposia 2016	AACR 2015	AAI 2014, EULAR 2016

CD3-Directed DART Molecules – Learnings to Date

- On-target engagement
- Significant potency and low-dosing requirement (vs. mAb)
- Manageable safety/tolerability (i.e., <u>Cytokine Release Syndrome</u>)
- Preliminary evidence of biological and clinical activity
- Rationale for combination with anti-PD-1

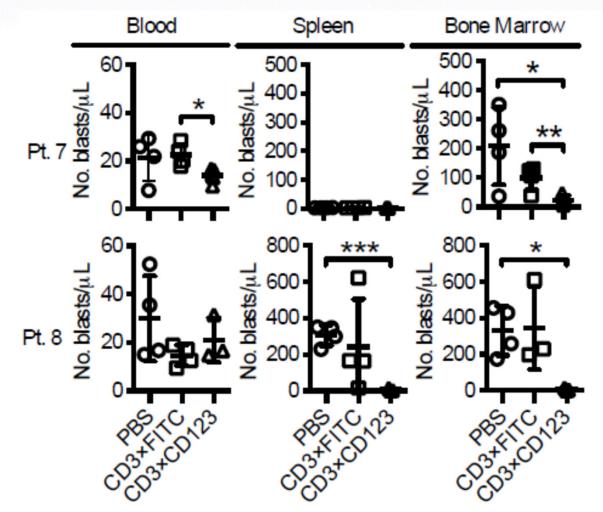
MGD006 Clinical Update



MGD006: CD123 x CD3 DART

Candidate	Humanized CD123 x CD3 DART
Function/MoA	 Redirected T-cell killing against targeted leukemia cells Elimination of leukemic stem cells Sparing of normal hematopoietic stem cells Capable of engaging any T-cell without HLA-restriction Potent in vivo preclinical activity in preclinical models Extremely low clinical dosing (ng/kg)
Indications	 Lead: acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) Other hematologic neoplasms including B-cell ALL
Development	 Phase 1 study ongoing in US and EU (dose escalation)
Partner	 MacroGenics retains full rights in No. Amer., Japan, Korea & India Servier has rights for all other territories

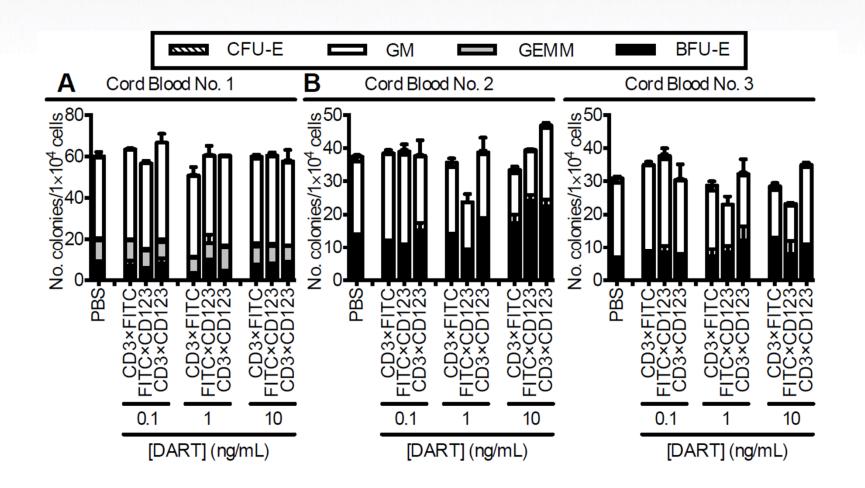
MGD006 Suppresses CD123+ Leukemia Xenografts



Irradiated NSG mice (n=5/group) injected with K562GFP-CD123 cells and treated with DARTs. Bioluminescence imaging on days 3, 12, 19, and 28 showed significant inhibition (p<0.0001) of tumor growth in CD3×CD123 DART; *Al-Hussaini, et al. Blood 2016,127:122-31*

MGD006 Suppresses Leukemia Patient Xenografts

NSG mice reconstituted with human AML cells



Al-Hussaini et al. Blood 2016,127:122-31

CONFIDENTIAL

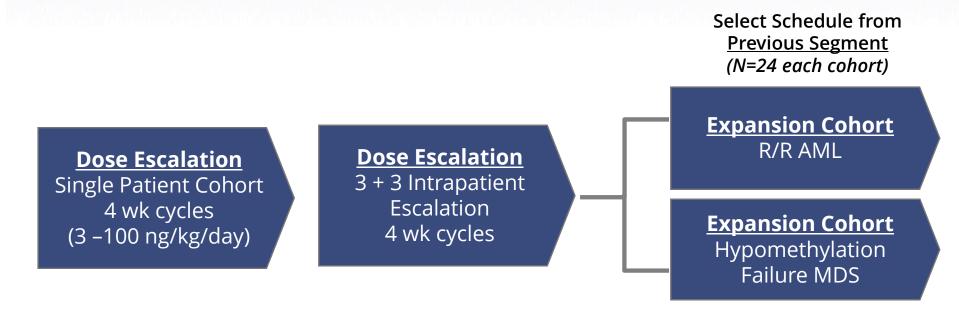
MGD006 Shows Minimal/No Impact on Bone Marrow Precursors

- Cord blood cells from 3 healthy donors, incubated with agents for (A) 4 hours or (B) 18 hours
- Plated in methylcellulose-based medium; colonies were scored on day 7; bars = SD of duplicate plates

Al-Hussaini et al. Blood 2016,127:122-31

AML Treatment Overview

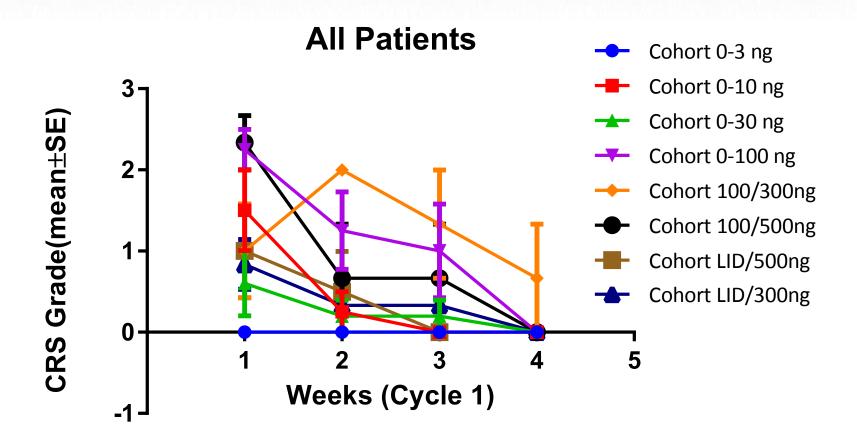
- Acute myeloid leukemia (AML): heterogeneous group of diseases with neoplastic infiltration of blasts in blood, bone marrow, viscera
 - 20,000 new cases in US (2016)
 - Incidence increases with age; median age at onset is 67 years
 - Overall 5-year survival rate is 26.6%
 - Untreated AML patients succumb within weeks
- Current therapy is suboptimal:
 - Standard therapy comprises "7+3" induction chemotherapy (cytarabine and daunorubicin) followed by consolidation chemotherapy +/- transplantation
 - Limited by toxicity and high rates of relapse
 - Salvage therapies compromised by short response duration & high relapse rate
- Large unmet need given toxicity and high rates of relapse with standard therapy



Key Goals for MGD006 FIH Study

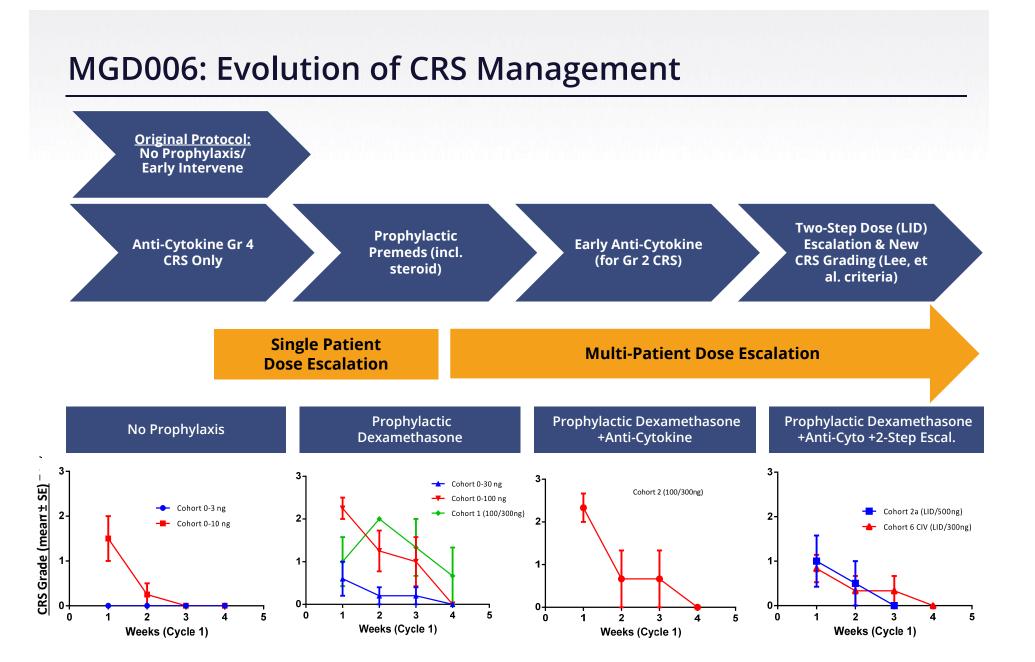
- Define safety and preliminary clinical activity in patients with AML and MDS
- Optimize approach to delivery and supportive care
- Define consistent supportive care regimen to manage CRS and minimize corticosteroid use where possible to limit systemic immune suppression
- Define PK, PD and PK/PD relationships
- Position MGD006 for testing in other CD123+ therapeutic opportunities including ALL patients post-blinatumomab or post-CD19 CART cell therapy
- Set stage for follow-on mechanism-based combination studies with internal and/or external assets

MGD006 (CD123 x CD3): Phase 1 Study in Dose Escalation

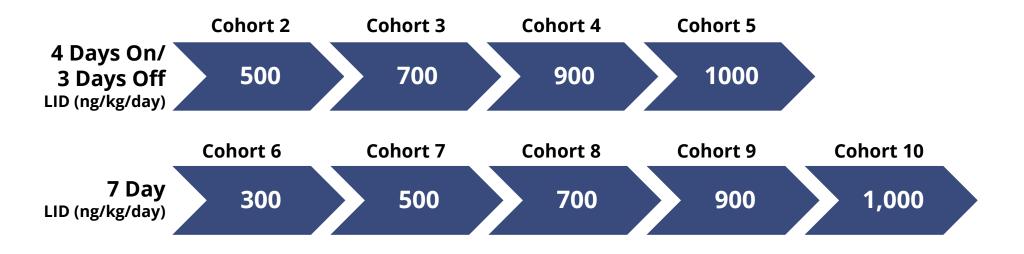


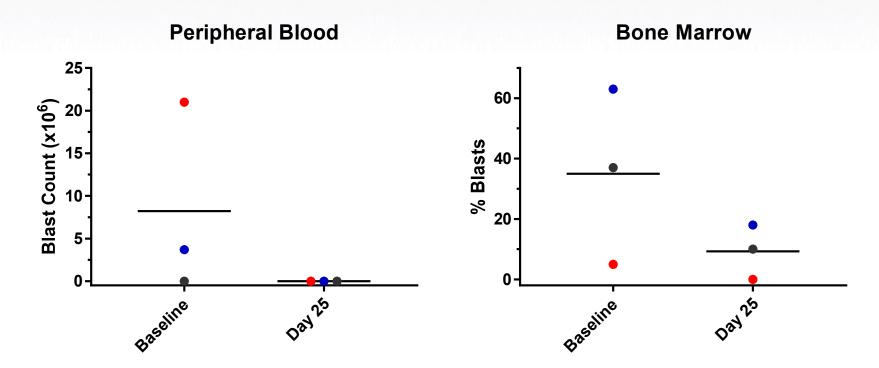
Patient Population: Patients with relapsed/refractory AML and hypomethylation failure Int-2/High Risk MDS

Dosing Regimen: Continuous intravenous infusion


Overview of CRS Across Dosing Cohorts to Date

- IRR/CRS is primary toxicity of significance
- Manifestations include fever, chills, hypotension, tachycardia


* LID, lead-in dose

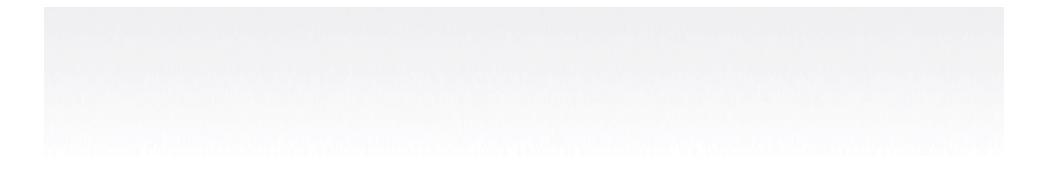

Current Two-Step Approach to Dose Escalation

- Lead-in-Dose (LID): 30 ng/kg/day x 3 days, 100 ng/kg/day x 4 days week 1, then:
 - Cohorts 2-5: Single Step-Up, 4-on 3-off schedule, Cycle 1+
 - Cohorts 6-10: Single Step-up for 21 days continuous infusion (Cycle 1) followed by 4-on 3-off schedule for Cycle 2 and beyond

MGD006: Decreased Blast Counts in 3 Patients

Patient ID	Diagnosis	Cohort	Relevant Hx
1 🔍	AML MO	30ng/kg/d	Refractory >2 induction Tx
2 🔴	AML M2	100ng/kg/d	PR duration <6 months Refractory to 2 salvage attempts
3	AML FLT3 mutated	100/500ng/kg/d	CR duration <6 months

MGD006: What Have We Learned?


- Defined safety profile at doses tested to date in 30 patients
- Refined supportive care to enable substantial limitation of CRS
- Positioned asset to enable outpatient administration after Cycle 1
- Characterized predictable PK properties
- Established biological and preliminary clinical activity in AML patients
- Mechanism-based rationale for combining MGD006 with anti-PD-1

MGD006: Next Steps

- Continue aggressive dose escalation given substantial progress in CRS control
 Early anti-cytoking therapy and two step intra patient dose escalation
 - Early anti-cytokine therapy and two-step intra-patient dose escalation
- Execution of cohort expansions in AML and MDS→ positioned for acceleration guided by strength of efficacy signal
- Assess opportunity for clinical testing of combination with anti-PD-1
- Characterize potential role of MGD006 in treating/preventing antigen-loss relapse in ALL patients post CD19-CAR-T cells or blinatumomab
- Longer half-life version of MGD006 now established

MGD007 Clinical Update

MGD007: gpA33 x CD3 DART Molecule

Candidate	• Humanized, Fc-bearing gpA33 x CD3 DART
Rationale	 gpA33 is homogenously expressed on >95% colorectal cancer Expressed on cancer stem cells and differentiated cell populations Normal tissue expression primarily restricted to intestinal epithelium
Function/MoA	Redirected T-cell killing against cancer cells
Indications	Lead: Colorectal cancerOther: Pancreatic and gastric cancers
Development	Phase 1 study ongoing
Partner	 MacroGenics retains full rights in No. Amer., Japan, Korea & India Servier has option for all other territories

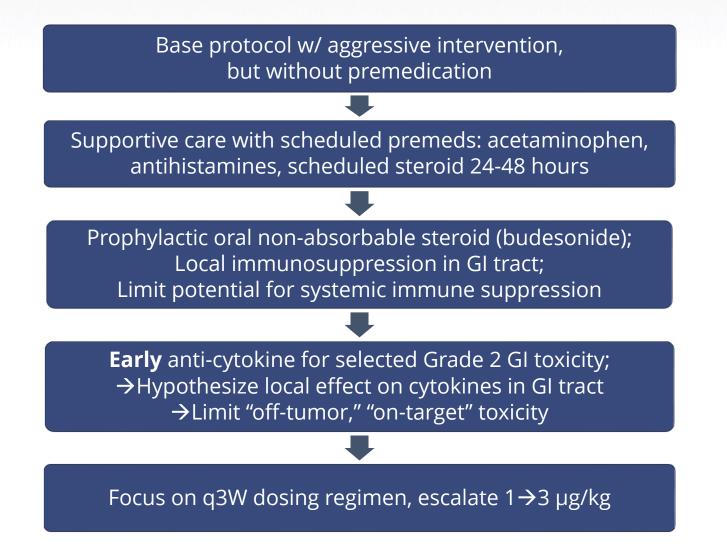
MGD007 (gpA33 x CD3): Phase 1 Study in Dose Escalation

Dose Escalation Weekly Administration Escalating Doses "3+3+3" design

Dose Escalation Every 3 wk Administration Escalating Doses "3+3+3" design Select Schedule from Previous Segment

Expansion Cohorts

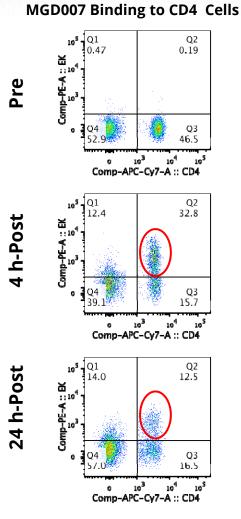
Objectives:Establish safety, determine MTD, characterize PK, evaluate alternate
schedules, and describe early evidence of anti-tumors activityPatient Population:Patients with relapsed / refractory metastatic colorectal carcinomaDosing Regimen:Intravenous infusion, qW or q3WEvaluations:RECIST and irRECIST

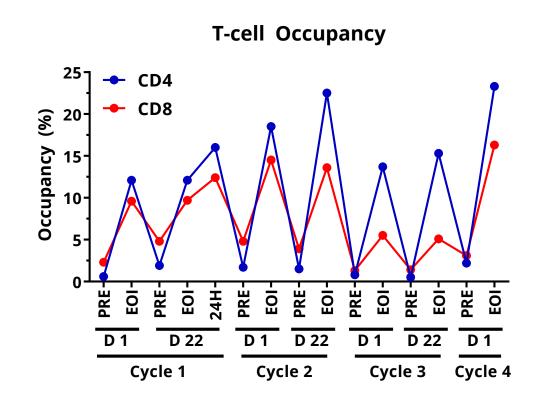


MGD007 Related Adverse Events

Related	N = 30		Related	N = 30	
Adverse Events* [†]	All	≥ Gr 3	Adverse Events* [†]	All	≥ Gr 3
Diarrhea	27 (90.0)	7 (23.3)	Dizziness	4 (13.3)	-
Nausea	23 (76.7)	6 (20.0)	Lymphopenia	4 (13.3)	3 (10.0)
Vomiting	22 (73.3)	6 (20.0)	Lipase Increased	4 (13.3)	1 (3.3)
Pyrexia	12 (40.0)	-	Dyspepsia	3 (10.0)	-
Abdominal Pain	11 (36.7)	2 (6.7)	Hyperglycemia	3 (10.0)	-
Fatigue	11 (36.7)	3 (10.0)	Hyponatremia	3 (10.0)	1 (3.3)
Chills	9 (30.0)	-	Hypophosphotemia	3 (10.0)	3 (10.0)
Dehydration	7 (23.3)	1 (3.3)	Cytokine Release Syndrome	3 (10.0)	1 (3.3)
Tachycardia	7 (23.3)	1 (3.3)	Influenza like illness	3 (10.0)	-
Decreased Appetite	6 (20.0)	-	Headache	3 (10.0)	-
Hypocalcemia	4 (13.3)	1 (3.3)	Myalgia	3 (10.0)	-
Lymphocyte count decreased	4 (13.3)	2 (6.7)	Leukopenia	3 (10.0)	2 (6.7)

* MGD007 related adverse event \geq 10% of patients as assessed by NCI CTCAE v4.03 [†] MedDRA Preferred Term


MGD007: Evolution of Supportive Care



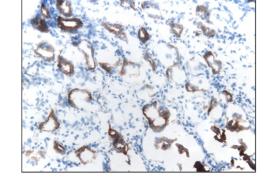
MGD007 Binds Circulating T Cells

Flow cytometry demonstrates consistent T-cell loading across multiple cycles

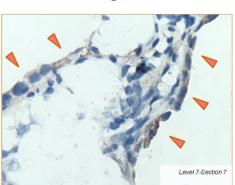
MGD007, 0.6 µg/kg patient

Pre = Pre-infusion; EOI = End of infusion (2h); 24h = 24h from EOI

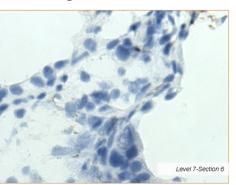
MGD007, 1 μ g/kg, representative patient 1 Cycle = 6 weeks

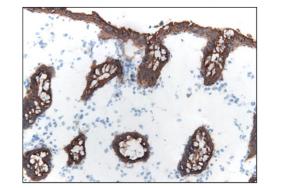


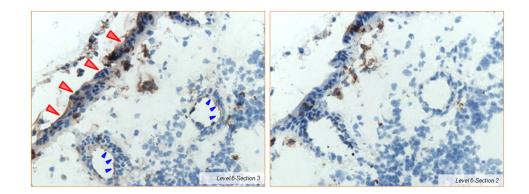
MGD007 Drug Distribution: gpA33 Target Cell Binding


Evidence of MGD007 binding to upper & lower intestinal epithelium (3 µg/kg)

gpA33 Expression

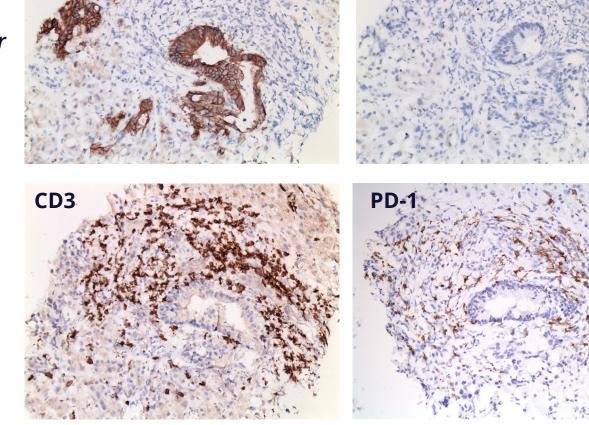

Duodenal Biopsy


MGD007 Drug Distribution



Negative Control

Rectal Sigmoid Biopsy


gpA33, CD3 and PD-1 Expression in CRC Patient Tumor Biopsy

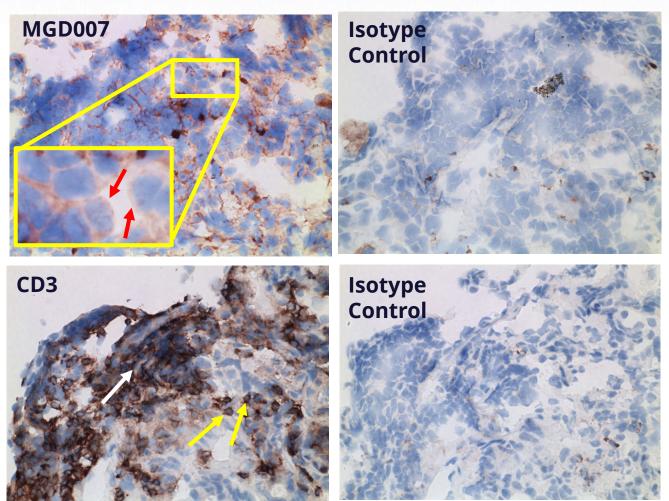
Liver biopsy obtained 24 hours post MGD007 dosing (1 µg/kg)

gpA33

gpA33 expression on colorectal cancer liver metastasis

Sheet of CD3+ T cells surrounding gpA33+ve tumor cells in colorectal cancer liver metastasis (subset expressing PD-1)

lsotype Control


FFPE analyses; objective: 20x

Drug On Target in Tumor Cells (via Biopsy)

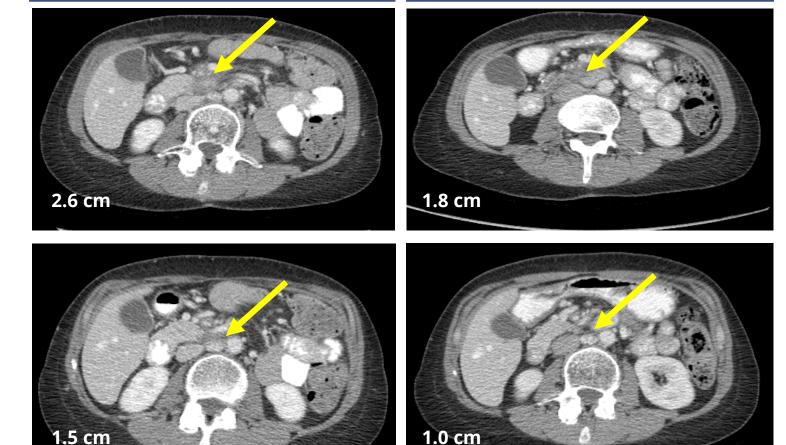
Lung biopsy obtained 48 hours post MGD007 dosing (1 µg/kg)

MGD007 detected on membrane of tumor cells (red arrows)

Tumor infiltrating T-cells (yellow arrows) and tumor-adjacent lymphoid nodule (white arrow)

Fresh frozen analyses; objective 40x

MGD007 Dose Escalation: Anti-tumor Activity in CRC

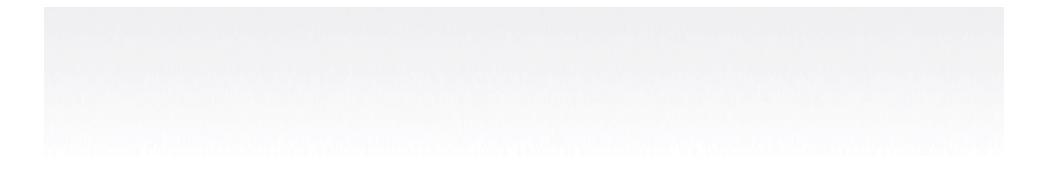

Case Study: 50 y/o female w/ MSI-low CRC w/ intra-abdominal metastasis

Baseline

End of Cycle 1

Central Mesenteric Mass

Aortocaval Lymph Node

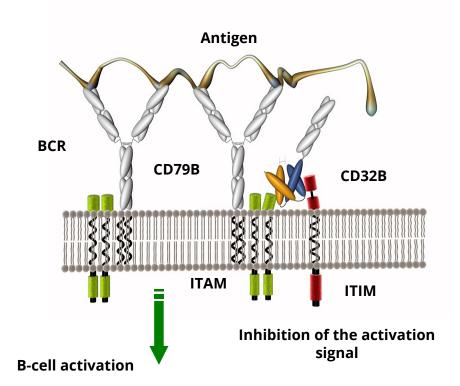

Prior treatment history: FOLFOX / irinotecan + bevacizumab / FOLFOX + aflibercept / regorafenib **Treatment & assessment**: Received two doses of MGD007, ~32% reduction in target lesions

MGD007: What Have We Learned to Date?

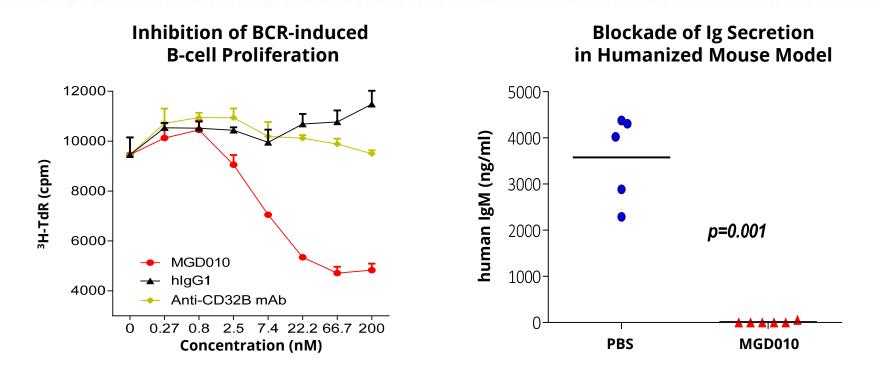
- Translational findings
 - Dose-dependent binding to CD4+ and CD8+ T-cells in peripheral blood
 - IHC demonstrates DART binding to tumor cells and gpA33⁺ intestinal epithelium
 - Evidence of T cell infiltration within tumor
 - Detectable levels of IL-6, IFN-y and TNF- α in serum of patients treated with MGD007
- GI/constitutional symptoms reversible and consistent with target distribution
 - Diarrhea appears to be secretory in nature (distinct from checkpoint inhibitor colitis)
 - Current regimen can be delivered and managed in outpatient setting
 - Supportive care consisting of PO/IV corticosteroids, PO non-absorb steroid, anticytokine
- No hepatic, pulmonary, cardiac, renal or neurological toxicities related to MGD007

MGD010 Clinical Update

MGD010: CD32B x CD79B DART Product Candidate

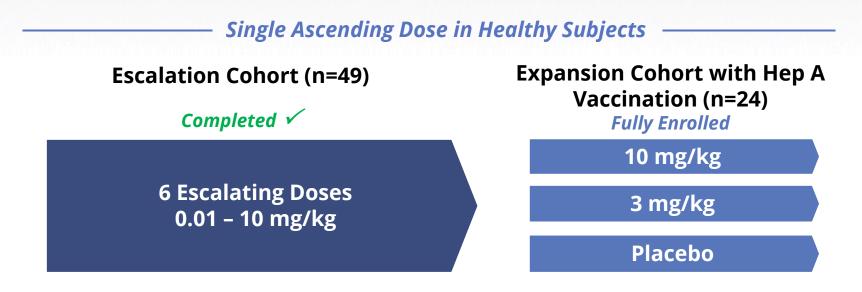

Novel mechanism for treatment of autoimmune disorders

Candidate	Humanized CD32B x CD79B DART with extended PK
Target/MoA	 Co-ligation of CD32B and CD79B on B lymphocytes Triggering of negative CD32B-coupled inhibitory loop Decrease B-cell activation without broad depletion Rapid onset of action
Development	Enrollment completed in Phase 1 study (healthy volunteers)
Partner	MacroGenics retains global rights


Novel Therapeutic Approach to Autoimmune Disorders

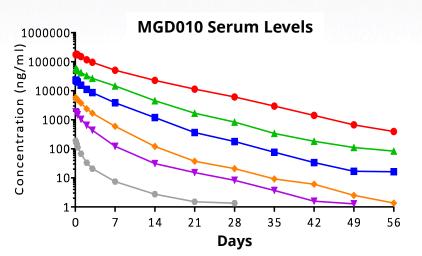
- B cells play an important role in immune tolerance and autoimmunity
 - CD32B (FcyRIIb): checkpoint molecule on B cells
 - CD79B: signal transducing component of B-cell receptor
- MGD010 inhibits B-cell activation
 - Co-ligation of CD32B with CD79B leverages natural physiologic B-cell inhibitory loop, delivering negative signal that limits B-cell activation
- MGD010 potential mechanistic benefits
 - Non-depleting intervention (vs. rituximab)
 - Rapid onset of activity (vs. belimumab)

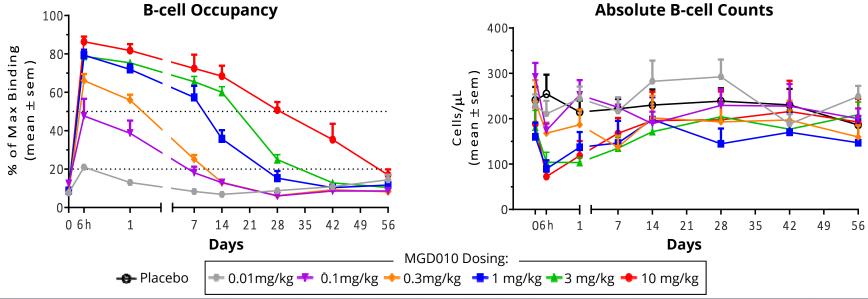
MGD010-mediated Inhibition of B-cell Function


Inhibition of B-cell proliferation in vitro and immunoglobulin secretion in vivo

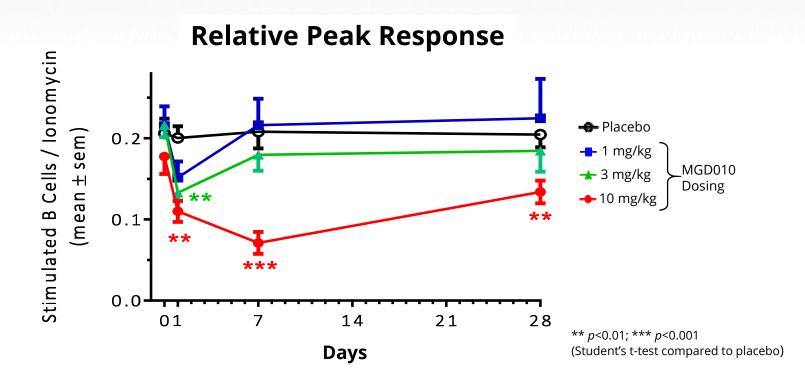
- Co-ligation of both targets is essential for functional activity of MGD010
 - Monospecific engagement of CD32B does not result in B-cell inhibition
 - Preclinical models confirm inhibitory properties of MGD010 with decrease in B-cell proliferation and suppression of immunoglobulin secretion

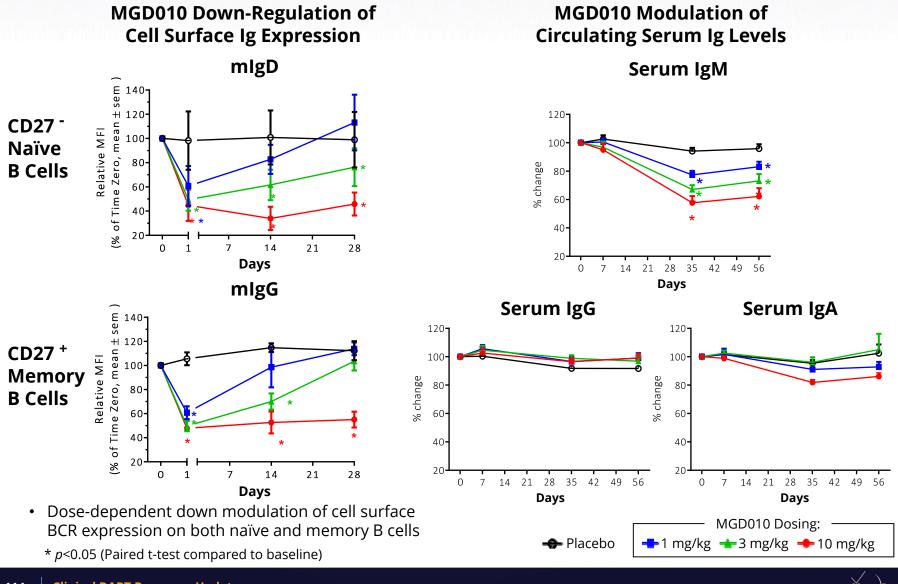
Phase 1 Study: Interim Results Presented at EULAR 2016




- Primary Objective
 - Assess safety and tolerability of single dose
- Secondary Objectives
 - Evaluate pharmacokinetics and pharmacodynamics effects
 - Evaluate potential anti-drug antibodies
- Exploratory Objectives
 - Evaluate binding and activation status on peripheral B cells and B-cell subsets
 - Assess immune phenotype, including modulation of B-cell subsets
 - Assess response of peripheral B cells to ex-vivo BCR stimulation

Pharmacokinetics and Circulating B-cell Occupancy

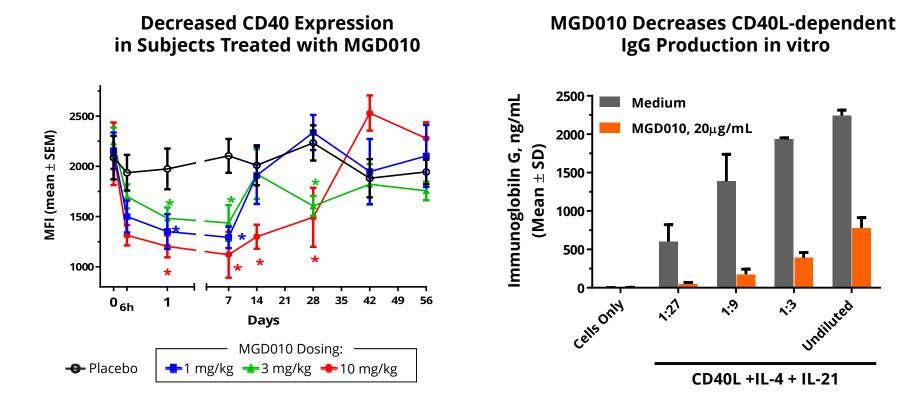

- MGD010 serum concentrations increase linearly with dose
 - Half-life: ~8 days at ≥1mg/kg
- Maximum B-cell occupancy at doses ≥1 mg/kg
 - Sustained receptor occupancy beyond one week at doses ≥ 1 mg/kg
- No B-cell depletion or cytokine release (data not shown) at any dose levels


Treatment with MGD010 Inhibited B-Cell Activation

MACROGENICS

- PBMCs from enrolled subjects collected longitudinally after MGD010 treatment
 - Ca²⁺ flux (hallmark of B-cell activation) induced ex vivo by B-cell receptor ligation using anti-IgM
 - Data normalized to maximum Ca²⁺ permeability (maximum induction) via ionomycin
- Dose dependent B-cell inhibition demonstrated with increasing doses of MGD010
 - Inhibition sustained for several weeks at highest dose levels

MGD010 Modulated Cell Surface BCR and Serum Ig Levels



MGD010 Reduces CD40 Expression and Response

Potential impact on B-cell : T-cell interactions

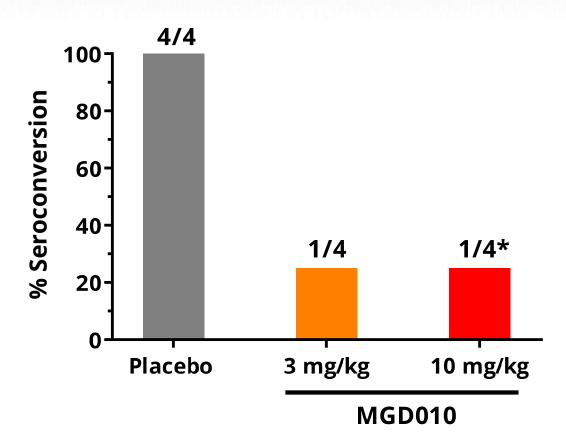
- CD40 is co-stimulatory molecule involved in T:B cell cross-talk
- CD40/CD40L interaction differentiates B cells & activates antigen presenting cells

- Purified human B cells exposed to CD40L (500ng/mL), IL-4 (100ng/mL, a Th2 cytokine) and IL-21 (20ng/mL, a Tfh cytokine) to induce differentiation towards Ig-producing cells
- IgG levels determined on day 5

Clinical DART Programs Update

115

* p<0.05 (Paired t-test compared to baseline)


Т

Undiluted

3

MGD010 Inhibits Ag-specific Response in Healthy Volunteers

Response to hepatitis A vaccine (a model antigen) in Phase 1 expansion cohort

- Interim seroconversion data (day 56 post vaccination)
- Quantitative results pending

* One additional patient did not complete day 56 follow-up, but was negative until day 29

Exploring Broad Range of Potential Indications to Pursue

Larger, More Established Indications*

Niche, Less **Established** treatment options

•				
-	 Systemic Lupus Erythematosus (SLE) Multiple Sclerosis (MS) Rheumatoid Arthritis (RA) 			
-	• Sjogren's Syndrome (SS)			
	• Primary Vasculitis (e.g. Polymyalgia			
	rheumatica/Giant cell arteritis/Behçets)			
	• Graft vs. Host Disease (GVHD)			
	• Myasthenia Gravis			
	• Pemphigus			
	• Neuromyelitis Optica			
	 Anti-NMDA receptor encephalitis 			
	• Guillain–Barré syndrome			
	Chronic inflammatory demyelinating			
	polyneuropathy (CIDP)			
	Grave's opthalmopathy			
	• lgG4 RD			
	 Idiopathic thrombocytopenic purpura (ITP) 			

* Indications with currently approved and marketed agents

MGD010: Inhibits Multiple Aspects of B-Cell Function

- Well tolerated up to 10 mg/kg in healthy subjects in single dose study
- Inhibits antigen-specific response in healthy volunteers
- Sustained biological effects for as long as two months
- Activity consistent with preclinical models
 - No B-cell activation or cytokine release
 - No depletion of peripheral B cells
 - BCR saturated at \geq 1mg/kg with sustained receptor occupancy
- Down-modulates B-cell function at multiple levels
 - Reduction in BCR-induced Ca²⁺ mobilization
 - Decrease surface lg expression and serum lgM levels
 - Down-modulation and inhibition of CD40 function
- Broad opportunity across multiple autoimmune disorders
- Upcoming milestone: report updated Ph. 1 study data (Hep A cohort) in 2017

Today's Agenda

Welcome

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Today's Agenda

Welcome

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A

Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Today's Agenda

Welcome <u>Scott Koenig,</u> M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

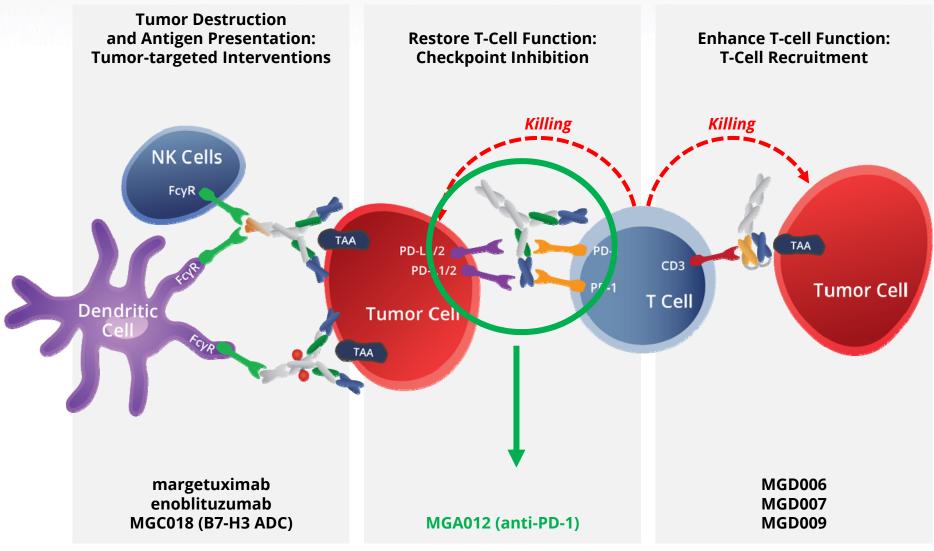
Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

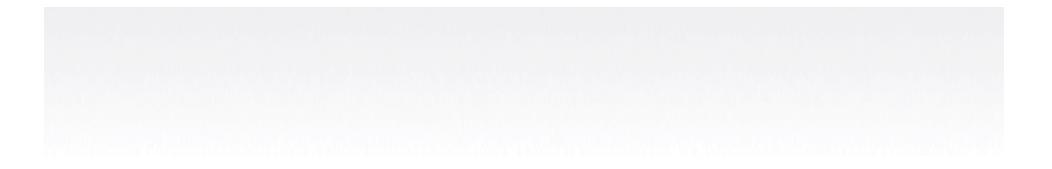
"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute


Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A


Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Integrating PD-1 Blockade into MacroGenics' Portfolio

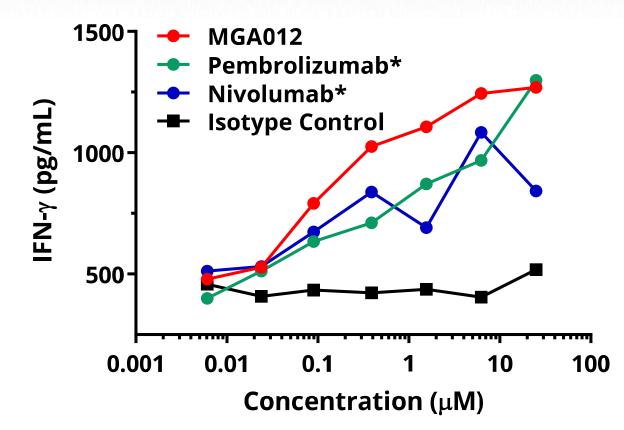
TAA: tumor-associated antigen

MGA012: Anti-PD-1 Antibody

Introducing MGA012: Anti-PD-1 mAb

Candidate	 Humanized proprietary anti-PD-1 mAb Hinge stabilized humanized IgG4 Benchmarks favorably against leading mAbs
Rationale	 Anti-PD-1 as mainstay of cancer immunotherapy Basis for combination immunotherapy with proprietary assets Potential commercial/reimbursement advantages
Function/MoA	 Blockade of PD-1 interaction with PD-L1 & PD-L2, which down-regulates T-cell activation Disrupts negative signaling pathway in T cells directed against tumors (checkpoint inhibition)
Indications	Multiple solid tumors
Development	Phase 1 trial dosing ongoing
Partner	MacroGenics retains global rights

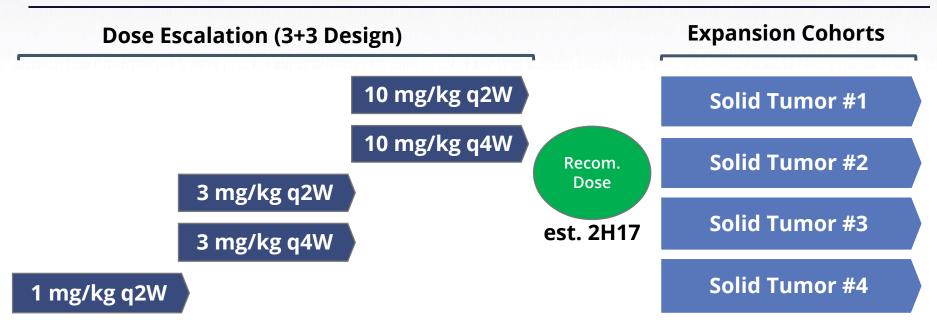
MGA012: Favorable Technical Profile


	MGA012 Compared to:	
MGA012	Nivo*	Pembro*
Affinity for human PD-1	>4x greater	>6x greater
Off-rate for human PD-1	~2x slower	~6x slower
Cell binding (MFI)	>	Equivalent
PD-L1/PD-L2 binding blockade	>	>
T-cell activation (IFNy)	Equivalent	Equivalent
PK in cynomolgus monkeys	>	Equivalent

MGA012	Results
Tissue cross-reactivity	No unanticipated findings
Toxicology in cynomolgus monkeys: IV at 10, 40 or 150 mg/kg; QW x 4	Well tolerated at all doses No unanticipated findings NOAEL = 150 mg/kg
Predicted half-life in humans	~18 days

*Replicas of nivolumab and pembrolizumab produced at MacroGenics

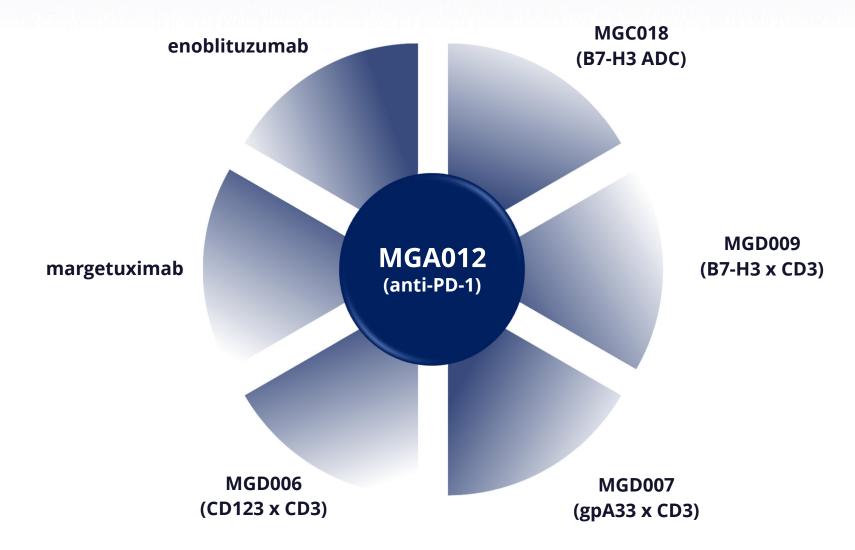
MGA012 Enhances Activation of SEB-stimulated Human T Cells



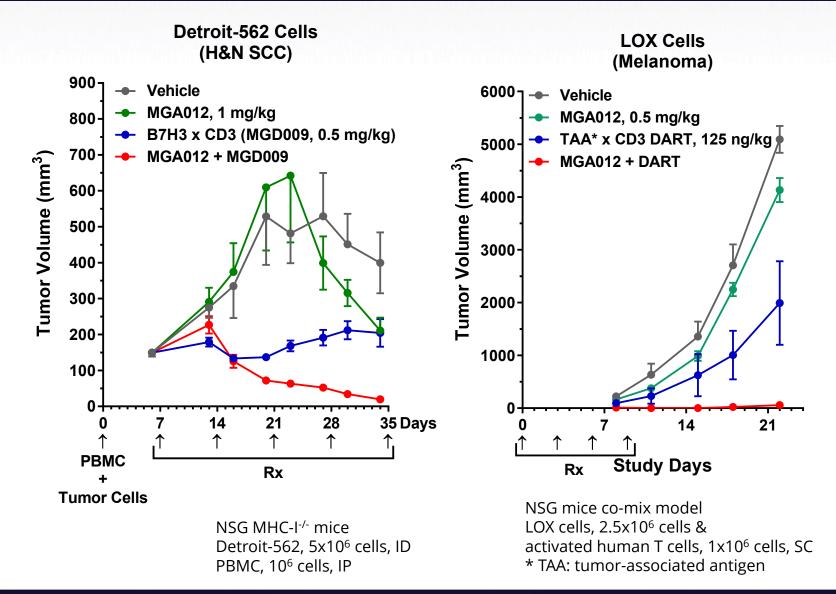
Human PBMCs were pre-stimulated with 0.5 ng/ml SEB for 48h and re-stimulated for 48h in presence or absence of indicated mAbs. IFNy in supernatant was measured by ELISA.

*Replicas of pembrolizumab and nivolumab produced at MacroGenics

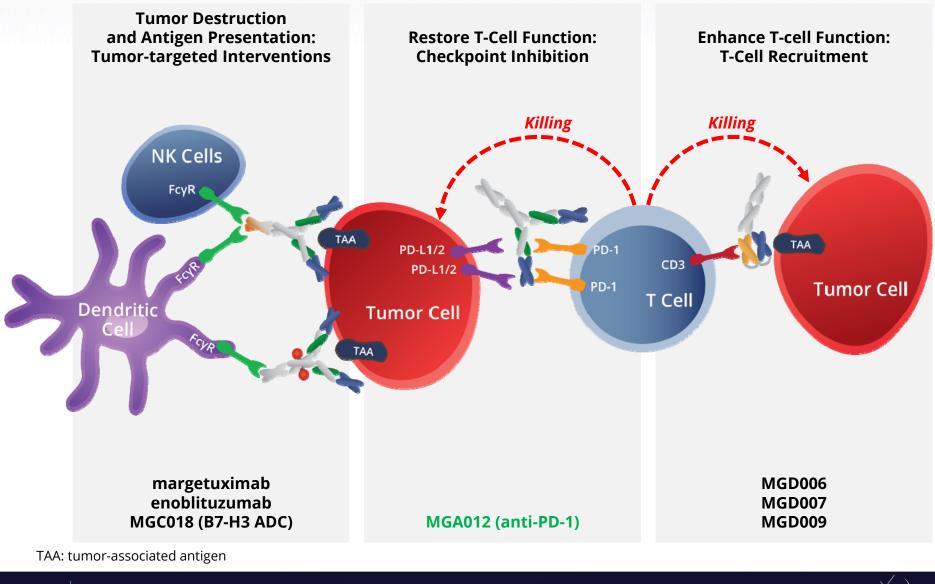
MGA012 (Anti-PD-1): Phase 1 Study Design


Objectives:Establish safety profile and initial clinical activityConfirm that MGA012 compares favorably to benchmark PD-1 data

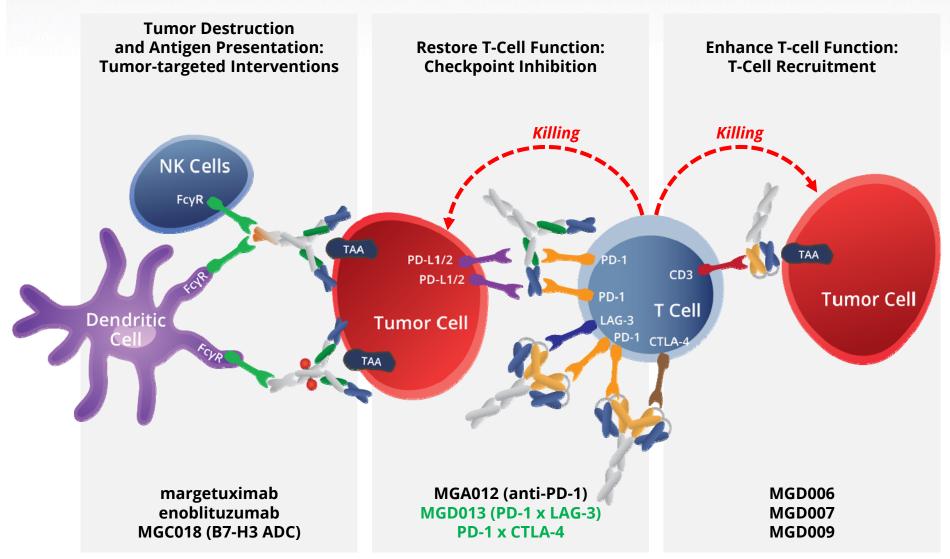
- Patient Population: Any relapsed / refractory advanced or metastatic solid tumor
- **Dosing Regimen:** 1-hr Intravenous infusion, q2W or q4W
- **Evaluations:** RECIST and irRECIST
- **Site Deployment:** ~30 Sites across United States, Europe and Australia


Enabling Multiple Combo Opportunities with MGA012

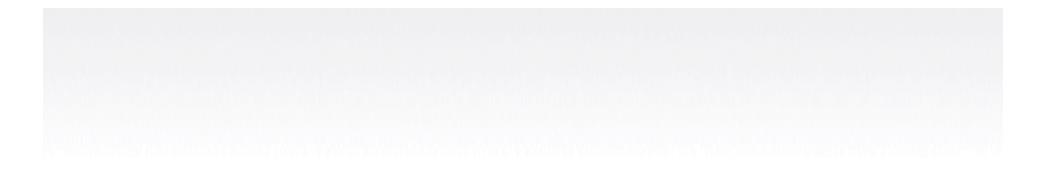
Primary goal: early combination with internal pipeline



MGA012 Enhances DART-mediated T-cell Killing in vivo



Integrating PD-1 Blockade in MacroGenics' Portfolio

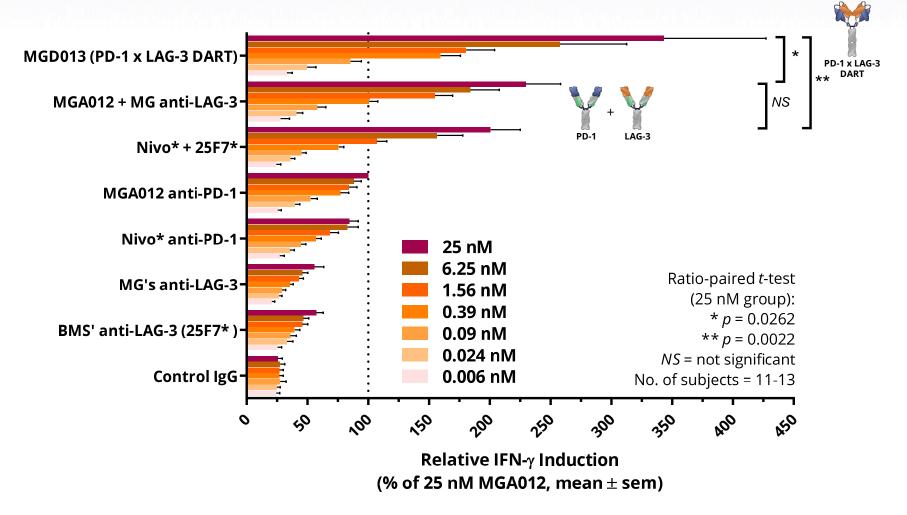


Targeting Independent Pathways for Combinatorial Activity

TAA: tumor-associated antigen

Combinatorial Checkpoint Inhibition

Strategy for enhancing antitumor adaptive responses


MGD013 Poised for Clinical Development in 2017

Candidate	 Humanized, proprietary PD-1 x LAG-3 DART Hinge-stabilized human IgG4 Benchmarks favorably against leading mAbs 		
Rationale	Coordinate blockade of two checkpoint co-expressed on T cells		
Function/MoA	A • "Rejuvenation" of "exhausted" T cells		
Indications	Multiple solid tumors and hematological malignancies		
Development	IND targeted for 1H2017		
Partner • MacroGenics retains global rights			

MGD013 Enhances TCR-driven Activation In Vitro

Enhancement of primary T-cell response following SEB stimulation

IFN γ release by 25 nM MGA012 = 3276 \pm 744 pg/mL

MGD013: Synergistic Checkpoint Inhibition

Pre-clinical development:

- Superiority compared to two stand alone mAbs
- Favorable toxicology profile in cynomolgus monkeys
- Projected human dosing at \geq 2 week intervals
- IND-enabling activities & GMP manufacturing successfully completed

Clinical opportunities:

- Salvage patients who have progressed on prior checkpoint inhibitor
- Superiority opportunity against PD-1 mAb or PD-1 mAb + LAG-3 mAb combo

Advantages:

- Potential clinical superiority
- Simpler clinical development path than mAb combination
- Enhanced patient convenience
- Potential commercial advantages

PD-1 x CTLA-4 DART & TRIDENT Program

Tailoring valency to precise pharmacology

PD-1 x CTLA-4 Dual Checkpoint Targeting Rationale

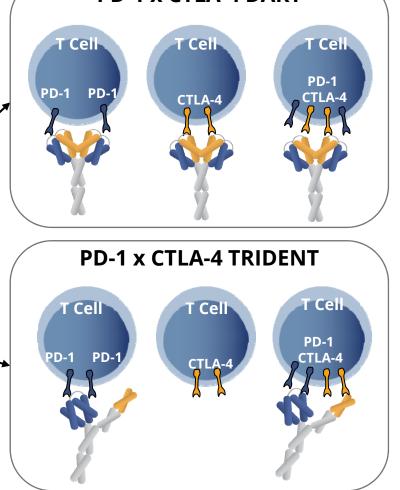
- PD-1 and CTLA-4: clinically validated co-inhibitory molecules
- Complementary mechanisms of action:
 - Anti-PD-1: release of T-cell inhibition at tumor sites
 - Anti-CTLA-4: polyclonal activation/expansion
- Coordinated CTLA-4 and PD-1 blockade has achieved synergistic antitumor activity in clinic

Challenge - Maintain potency of combinatorial blockade via:

- Full PD-1 blockade
- Tunable levels of CTLA-4 blockade

PD-1 x CTLA-4 Dual Checkpoint Targeting Strategy

Tailoring valency to control stand-alone CTLA-4 blockade


PD-1 arm: Bivalent

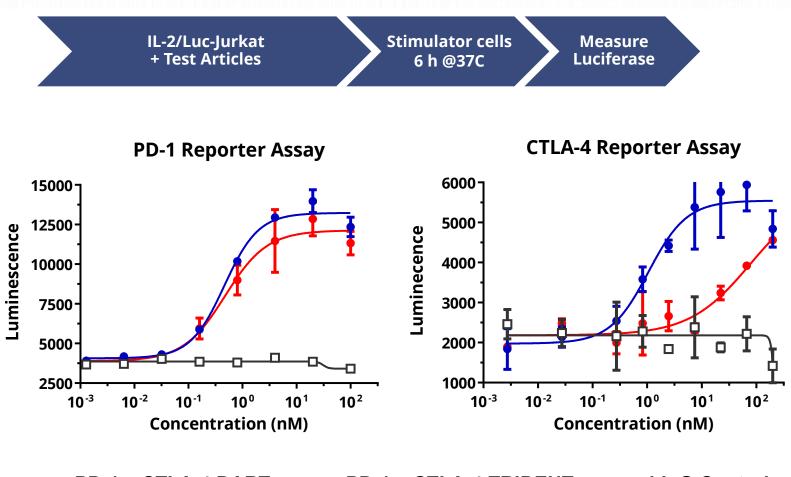
- Maintain full PD-1 blockade, irrespective of CTLA-4 co-expression
 CTLA-4 arm: Variable valency

 DART: bivalent anti-CTLA-4

 Full CTLA-4 blockade, irrespective of PD-1

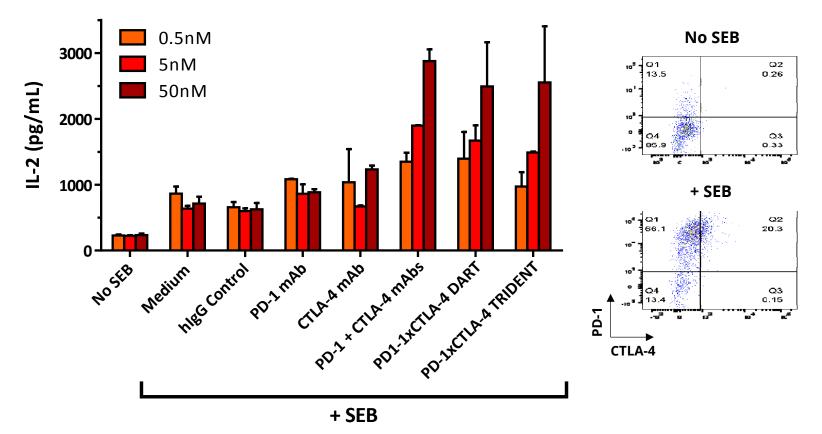
 PD-1 x CTLA-4
- TRIDENT: Monovalent anti-CTLA-4 ~
 - CTLA-4 blockade biased toward PD-1 co-expression

ROGENICS


PD-1 x CTLA-4 DART

PD-1 x CTLA-4 DART / TRIDENT Program

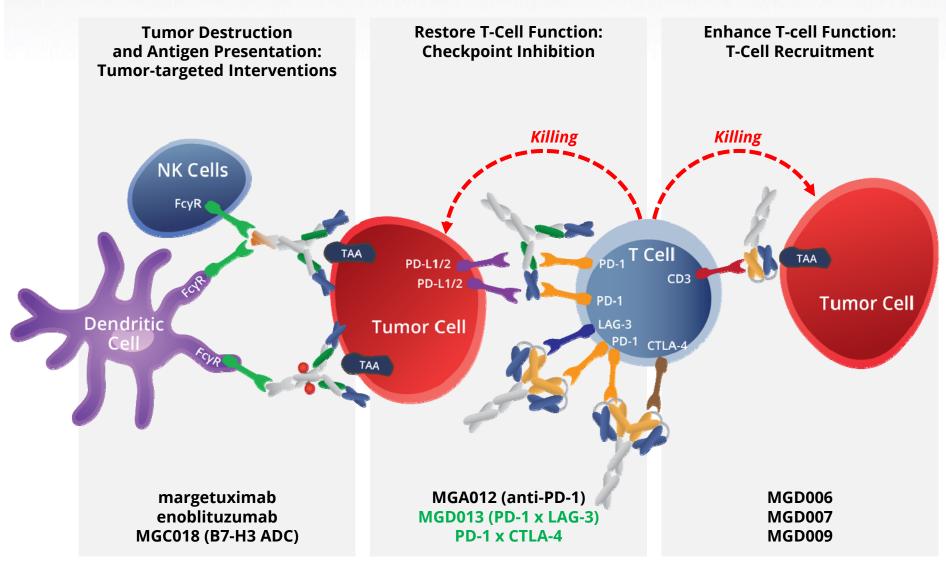
Candidates	Humanized anti-PD-1 x anti-CTLA-4		
Constructs	Fc-DART (IgG4) PD-1 x CTLA-4 x CTLA-4 x PD-1	• TRIDENT (IgG4) PD-1 x PD-1 x CTLA-4	
Preferred Profile	 Independent blockade of both PD-1 and CTLA-4 	 Full PD-1 blockade independent of CTLA-4 expression CTLA-4 blockade biased toward co-expression with PD-1 	
Indications	 Multiple solid tumors and hematological malignancies 		
Development	Candidate selection ongoing		
Partner	MacroGenics retains global rights		


PD-1 x CTLA-4-mediated Enhancement of TCR Signal Transduction

Differential CTLA-4 blockade by DART & TRIDENT molecules

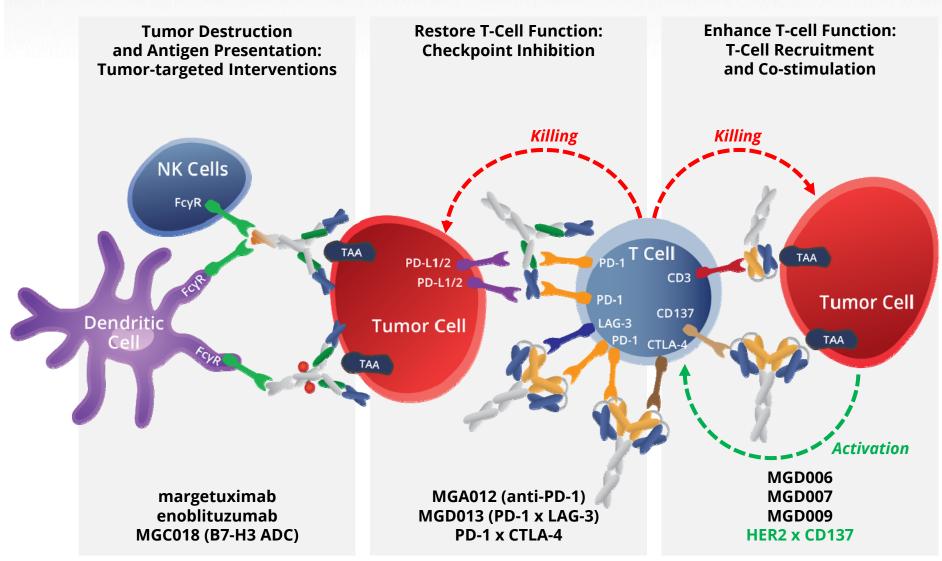
PD-1 x CTLA-4 DART & TRIDENT Enhance T-cell Responses

PD-1 x CTLA-4 DART & TRIDENT recapitulate individual mAbs' activity



Interleukin-2 Release Assay

PBMCs were stimulated with 0.5 ng/ml SEB for 48 hours, harvested, washed and re-plated in 96-well plates with fresh SEB and the indicated molecules for an additional 48 hours


Targeting Independent Pathways for Combinatorial Activity

TAA: tumor-associated antigen

Targeting Independent Pathways for Combinatorial Activity

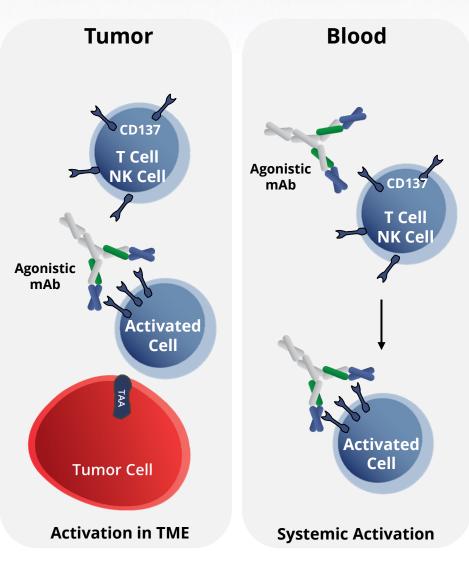
TAA: tumor-associated antigen

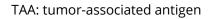
Tumor-cell Anchored T-cell Co-stimulation

Limiting generalized activation by targeting tumor micro-environment

CD137 (4-1BB): Potent Inducible Co-stimulatory Molecule

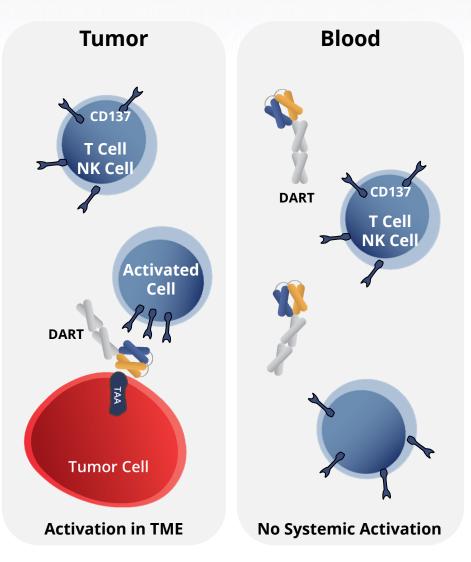
- Expressed upon activation of CD8, CD4, NK & dendritic cells
 - Potent co-stimulatory signal engineered in certain CAR-T cells
- Expressed by immune cells and vascular endothelium in tumor
 - Induced expression on TILs following MHC-peptide/TCR engagement
 - Induced expression on NK cells by mAb-opsonized tumor cells
- CD137L expressed by fraction of tumors, but insufficient to fully activate


CD137 activation results in:


- \uparrow Endothelial adhesion molecules and chemokines
 - ↑ CD8 homing
- $\ \uparrow$ Immune-cell proliferation and anti-tumor cytolytic activity
- Countering of immune cell exhaustion and apoptosis
 - Synergy with adoptive T-cell therapy, anti-PD-1 or anti-CTLA-4 in mouse models
- \uparrow ADCC by NK cells:
 - Synergy with rituximab, trastuzumab or cetuximab in mouse models

Agonistic anti-CD137 mAbs in the Clinic

- Urelumab (BMS, hulgG4)
- PF-05082566 (Pfizer, hulgG2)
- Single agent activity against melanoma and lymphoma in Ph. 1/2
- Urelumab associated with dosedependent hepatitis (some fatal):
 - Passive accumulation in liver
 - Inflammation via liver-resident
 CD137+ cells (unidentified), enhanced
 by FcyRs


CD137-based DART: Building Tumor-anchored Activator

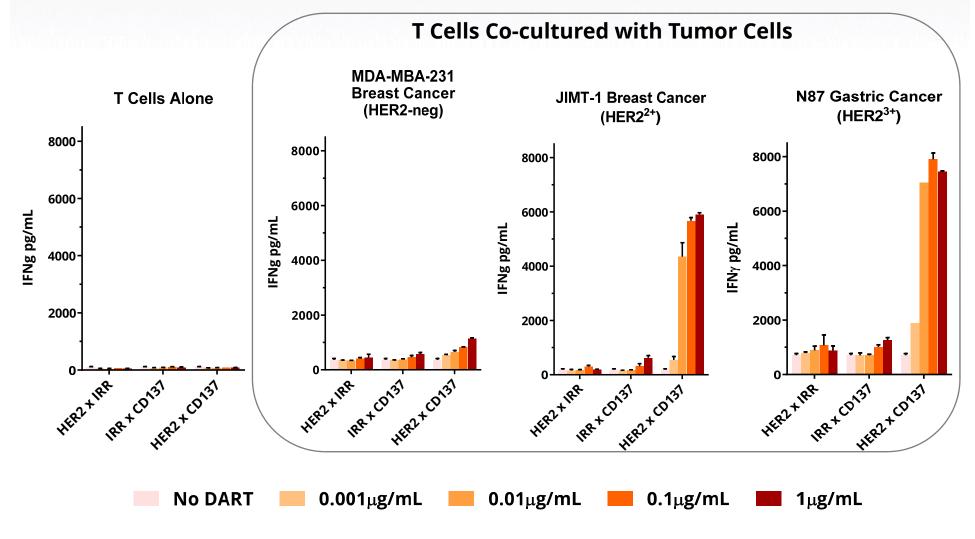
Challenge:

- Direct CD137 activation within tumor microenvironment
- Limit systemic effects of CD137 therapy

Solution:

• TAA x CD137 DART molecules

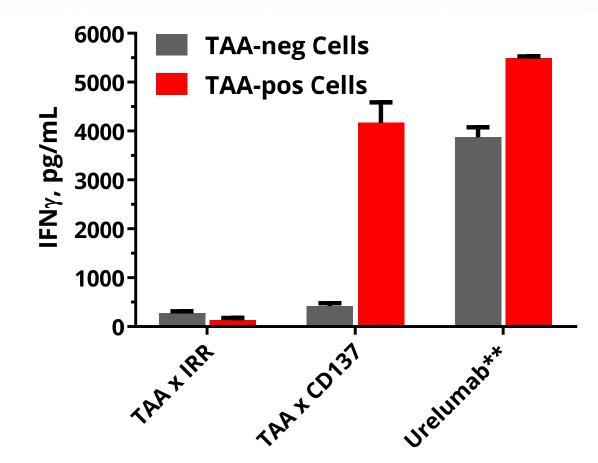
TAA: tumor-associated antigen



HER2 x CD137 DART Program

Candidates	 Anti-CD137 x humanized anti-HER2 CD137: agonistic upon secondary clustering HER2: epitope independent of margetuximab, trastuzumab & pertuzumab
Constructs	 Fc-bearing DART Null Fc domain to eliminate FcR-mediated clustering
Preferred Profile	 Tumor antigen-dependent CD137-mediated agonistic activity No systemic T-cell or NK-cell activation Increased therapeutic window
Indications	 HER2⁺ amplified/non-amplified solid tumors Combination therapy for solid tumors Margetuximab, trastuzumab, pertuzumab Checkpoint inhibitors
Development	Candidate selection ongoing
Partner	MacroGenics retains global rights

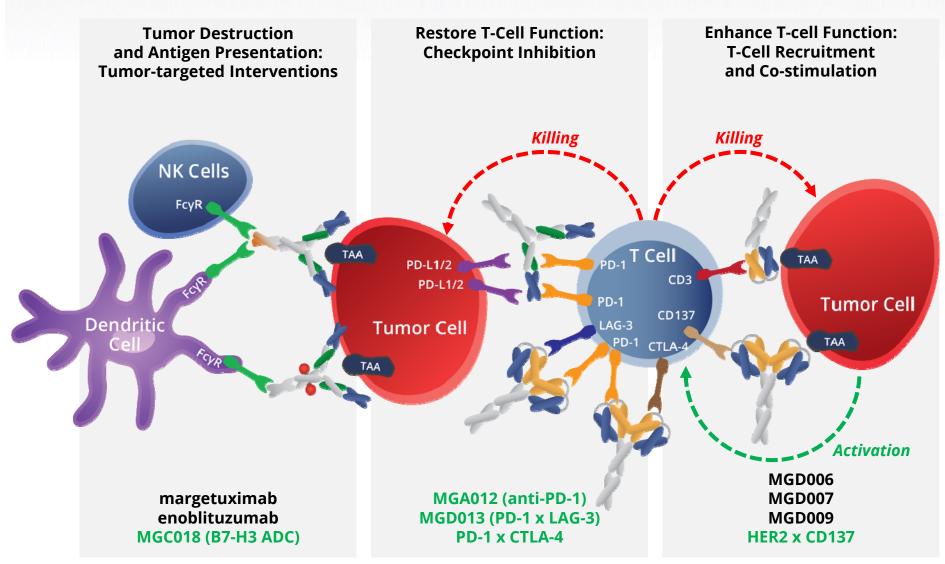
HER2 x CD137 DART: HER2-dependent T-cell Activation



T cells stimulated with aCD3 Beads (Beads/T = 1:1) ± HER2 x aCD-137 DARTs ± Tumor cells

DART Format: Plug-and-play for Additional Cancer Targets

TAA* x CD137 DART: Co-stimulation in presence of TAA-positive cells



T cells stimulated with CD3 beads (beads : T cells = 1:1) ±0.1ug/ml DARTs or mAb

- * TAA: tumor-associated antigen (undisclosed)
- ** Replica of urelumab generated at MacroGenics

Targeting Independent Pathways for Combinatorial Activity

TAA: tumor-associated antigen

Today's Agenda

Welcome Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Margetuximab: Potential Best-in-Class Anti-HER2 mAb

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Comprehensive B7-H3 Franchise: Fc-Optimized mAb, DART and ADC

Paul Moore, Ph.D. – VP, Immunology & Cell Biology, MacroGenics Jim Vasselli, M.D. – VP, Clinical Development, MacroGenics

DART and TRIDENT: Leading Multi-specific Antibody Platforms

Syd Johnson, Ph.D. – VP, Antibody Engineering, MacroGenics

Clinical DART Programs Update

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics

Q&A / Break

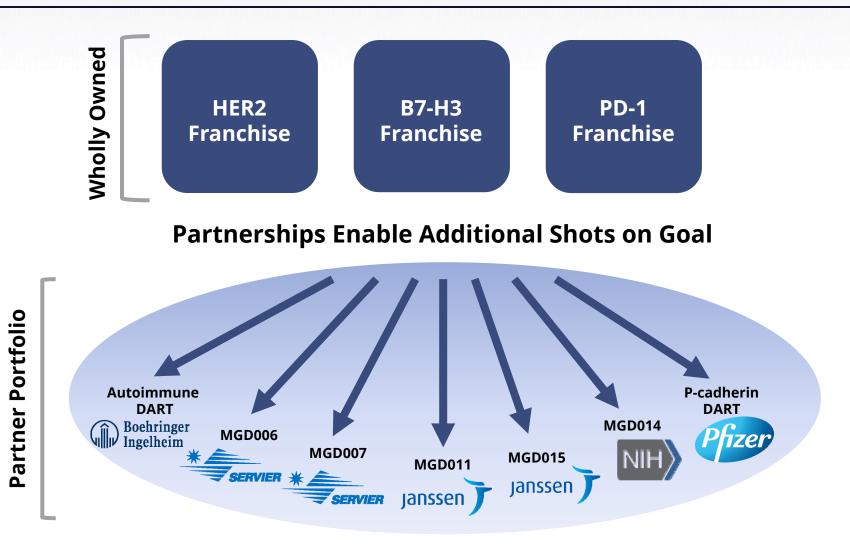
"Combination Treatments with Checkpoint Blockade"

F. Stephen Hodi, Jr., M.D. – Director, Center for Immuno-Oncology, Dana-Farber Cancer Institute

Immuno-Oncology: Targeting Immune Regulators

Jon Wigginton, M.D. – Senior VP, Clinical Development & CMO, MacroGenics Ezio Bonvini, M.D. – Senior VP, Research & CSO, MacroGenics

Wrap-up / Q&A


Scott Koenig, M.D., Ph.D. – President & CEO, MacroGenics

Balanced Portfolio Across Novel and Validated Targets

- Three core franchises
 - HER2 (validated target)
 - B7-H3 (novel)
 - PD-1 (emerging backbone)
- Utilization of core technology platforms
 - Target discovery
 - mAb / Fc engineering
 - DART / TRIDENT multispecifics
- Fully-integrated drug development operations
 - Rapid throughput with >1 IND annually (6 INDs in last 3 years)
- Leveraging partnerships to secure non-dilutive capital, broaden portfolio and access external expertise

Breakthrough Biologics, Life-Changing Medicines®

Extending Our Portfolio Through Collaborations

Key Upcoming Milestones

- Margetuximab
 - Complete enrollment in Phase 1b/2 gastric trial
- Enoblituzumab
 - Complete enrollment in new expansion cohorts for bladder and prostate cancer
 - Define future development plans based on monotherapy and combination study results
- Oncology DART Portfolio (MGD006, MGD007, MGD009)
 - Establish dose and schedule, and define future development strategy based on results
 - Initiate expansion cohorts
- MGD010
 - Report updated Phase 1 study data (Hepatitis A cohort)
- MGA012
 - Define recommended dose and schedule
 - Initiate first combination study
- Preclinical Pipeline
 - File IND for MGD013 (PD-1 x LAG-3 DART)
 - File IND for MGD014 (HIV DART)

Margetuximab

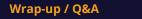
- Complete enrollment of SOPHIA study
- Preclinical Pipeline
 - File IND for MGC018 (anti-B7-H3 ADC)

2018

Our Pipeline of Product Candidates

Nine clinical-stage programs with \geq 1 new INDs annually

Program (Target)	Indication	Pre-IND	Phase 1	Phase 2	Phase 3	Partner	Our Commercial Rights
	malcation		T HUSC T	Thuse 2	Thuse 5	i artifici	
ONCOLOGY							
margetuximab (HER2)	Breast (HER2+) "SOPHIA"					Green Cross	Worldwide, excl. S. Korea
	Gastric (+pembrolizumab)						
enoblituzumab (B7-H3)	Solid Tumors (mono.)					_	Worldwide
	Solid Tumors (+ipi.)						
	Solid Tumors (+pembro.)						
MGD006 (CD123 x CD3)	AML/MDS					Servier	North America, Japan, South Korea, India
MGD007 (gpA33 x CD3)	Colorectal						
MGD009 (B7-H3 x CD3)	Solid Tumors					_	Worldwide
MGD011 (CD19 x CD3)	B-cell Malignancies					Janssen	U.S. Co-promote*
MGA012 (PD-1)	Solid Tumors					—	Worldwide
MGD013 (PD-1 x LAG-3)	Solid Tumors					_	Worldwide
MGC018 (B7-H3 ADC)	Solid Tumors					—	Worldwide
(PD-1 x CTLA-4)	Solid Tumors					—	Worldwide
(CD137 x HER2)	HER2+ Solid Tumors						Worldwide


AUTOIMMUNE & INFECTIOUS DISEASES

teplizumab (CD3)	Type 1 Diabetes Prev.			NIDDK/NIH	Worldwide
MGD010 (CD32B x CD79B)	Autoimmune Disorders			_	Worldwide
MGD014 (HIV x CD3)	HIV			NIAID/NIH	Worldwide

* MacroGenics has option to fund late-stage development in exchange for U.S. and Canada profit share.

"MGD" = DART

"MGA" = Antibody "MGC" = ADC

156

