Abstract No. 4089

Quantitative Prediction of Human Pharmacokinetics for Duvortuxizumab from Cynomolgus Monkey Data: A Translational Pharmacokinetic Modeling Approach

Xiling Jiang^{1*}, Hua Li², Jeffrey L. Nordstrom², Jennifer G. Brown², Liqin Liu², Syd Johnson², Ralph Alderson², Pamela L. Clemens¹, Jacintha Shenton¹, Imran Khan³, Yu-Nien Sun¹, Weirong Wang¹ ¹Janssen Research & Development, LLC, Spring House, PA, USA; ²MacroGenics Inc, Rockville, MD, USA; ³Janssen Research & Development, LLC, Raritan, NJ, USA *Presenting Author

INTRODUCTION

- CD19, a pan B-cell marker, is a promising target for the treatment of B-cell malignancies because of its expression on most B-cell lymphomas and leukemias.¹
- Duvortuxizumab, also known as JNJ-64052781 and MGD011, is a Fc-bearing bispecific CD19 x CD3 DART[®] protein which contains binding domains for CD19 and CD3 antigens.
- Duvortuxizumab was designed to target CD19⁺ cells for recognition and elimination by CD3-expressing T-lymphocytes.²
- A first-in-human (FIH), phase 1 dose-escalation trial of duvortuxizumab in patients with relapsed or refractory B-cell malignancies is ongoing (ClinicalTrials.gov NCT02454270).
- Here we report the results from a translational pharmacokinetic (PK) model that utilized duvortuxizumab PK data from cynomolgus monkeys to predict duvortuxizumab PK in humans.

METHODS

PK Studies in Cynomolgus Monkeys

Study 1

- Two groups of cynomolgus monkeys (n=2/sex/group) were administered 4 intravenous (2-hr IV) doses of duvortuxizumab once weekly at intra-animal escalating doses of 0.5, 5, and 50 (2x) μ g/kg or 2, 10, and 100 (2x) μ g/kg.
- Four groups of cynomolgus monkeys (n=1/sex/group) were administered 3 repeat doses of duvortuxizumab at 0.005 μg/kg, 0.05 μg/kg, or 0.5 μg/kg once weekly or 5 repeat doses at 0.5 μ g/kg every 3 to 4 days by 2-hr IV infusion.
- o Serum concentrations above the lower limit of quantification were obtained at dose levels >0.5 μ g/kg.

Study 2

 Four groups of cynomolgus monkeys (n=5/sex/group) were administered 2-hr IV infusions of duvortuxizumab at 0.2, 2, 5, or 10 μ g/kg once weekly for 4 weeks.

Translational PK Modeling

- PK parameters were obtained by 2-compartmental modeling using pooled data (N=51) from studies 1 (n=12) and 2 (n=39).
- The mean values of PK parameters from all animals pooled across both studies were used for interspecies scaling.
- The general form of the interspecies scaling equation was Y=a*W^b, where Y is the PK parameter, W is body weight, a is a proportionality constant, and b is the allometric exponent.
- o Allometric exponents of 0.75 and 1.0 were used for clearance (CL) and volume of distribution (V), respectively.
- o Assuming a body weight of 3 kg for a cynomolgus monkey and 70 kg for a human, CL in monkeys was divided by 2.2 to arrive at the estimated CL in humans.
- WinNonlin (Phoenix WinNonlin 6.3) was used to simulate expected profiles in humans.

RESULTS

PK in Cynomolgus Monkeys

- Duvortuxizumab was reasonably characterized using a 2-compartment model with linear CL from the central compartment.
- PK parameters from the pooled studies are presented in **Table 1**.

Table 1. Pooled PK Parameters Derived from 2-Compartmental Modeling of **Duvortuxizumab in Cynomolgus Monkeys**

Pooled Studies (N=51)	Dose Range (µg/kg)	CL (mL/h/kg)	CLD₂ (mL/h/kg)	V ₁ (mL/kg)	V₂ (mL/kg)	MRT (h)	t _{1/2,β} (h)
Mean	0.2 to 100	0.797	2.29	51.7	88.8	190.6	161.4
SD		0.198	2.50	6.6	30.1	74.0	61.3

CL = clearance; CLD₂ = intercompartmental clearance; MRT = mean residence time; N = number of animals; PK = pharmacokinetic; SD = standard deviation; $t_{1/2,\beta}$ = mean beta half-life; V₁ = volume of distribution for the central compartment; V_2 = volume of distribution for the peripheral compartment.

Predicted Human PK

- Duvortuxizumab PK parameters were estimated in humans assuming a single IV infusion administered over 2 hrs (Table 2).
- Estimated human PK parameters were used to simulate serum concentrationtime profiles for human doses ranging from 0.01 to 10 ng/kg (Figure 1).

Table 2. Predicted PK Parameters in Humans for Duvortuxizumab Administered as a Single 2-hr IV Infusion

	Dose	C _{max}	AUC	CL	CLD ₂	V ₁	V ₂	MRT	t _{1/2,β}
	(ng/kg)	(pg/mL)	(pg/mL·h)	(mL/h/kg)	(mL/h/kg)	(mL/kg)	(mL/kg)	(h)	(h)
Pooled	0.01	0.188	28	0 262	1 0/	517	000	105	105
studies	0.1	1.88	276						
	1	18.8	2762	0.502	1.04	51.7	00.0	403	433
(all doses)	10	188	27624						

AUC = area under the plasma concentration-time curve; CL = clearance; CLD₂ = intercompartmental clearance; Cmax = maximum plasma concentration; IV = intravenous; MRT = mean residence time; PK = pharmacokinetic; $t_{1/2,\beta}$ = mean beta half-life; $_1$ = volume of distribution for the central compartment; V_2 = volume of distribution for the peripheral compartment

Figure 1. Predicted Human Serum Concentration-Time Profiles of **Duvortuxizumab Scaled from Cynomolgus Monkey PK Parameter Values** from All Doses Pooled in a (A) Linear Plot (B) Logarithmic Plot

CONCLUSIONS

- PK of duvortuxizumab in cynomolgus monkeys was reasonably characterized using a 2-compartment model with linear CL from the central compartment.
- The translational PK model has been used to aid dose escalation of duvortuxizumab in the ongoing FIH, phase 1 trial.
- This work showcases the potential of translational PK modeling in supporting the selection of a FIH dose escalation strategy utilizing preclinical PK information.

REFERENCES

- 1. Hammer O. CD19 as an attractive target for antibody-based therapy. mAbs. Sep-Oct 2012;4(5):571-577.
- 2. Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. Apr 28 2011;117(17):4542-4551.

ACKNOWLEDGMENTS

This study was funded by Janssen Research & Development, LLC. Writing assistance was provided by Tracy T. Cao, PhD (PRA Health Sciences), and editorial support was provided by Namit Ghildyal, PhD (Janssen Research & Development). Writing support was funded by Janssen Research & Development, LLC.