A Phase 1, First-in-Human, Open-Label, Dose Escalation Study of MGD013, a Bispecific DART® Molecule Binding PD-1 and LAG-3 in Patients with Unresectable or Metastatic Neoplasms

1UPMC Hillman Cancer Center, Pittsburgh, PA; 2Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL; 3Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; 4Division of Hematology & Medical Oncology, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA; 5SCRI Nashville/OUHSC Oklahoma City, Oklahoma City, OK; 6Division of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL; 7Banner MD Anderson Cancer Center, Gilbert, AZ; 8Southern Medical Day Care Centre, Wollongong, NSW, Australia; 9Calvary Mater Newcastle Hospital, Waratah, NSW, Australia; 10Austin Health, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; 11MacroGenics, Inc., Rockville, MD; 12Bio-ClinPharm Consulting, LLC. Cranbury, NJ; 13Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX.
Presenter Disclosure Information

Jason J. Luke, MD, FACP

- **Data and Safety Monitoring Board**: TTC Oncology
- **Scientific Advisory Board**: 7 Hills, Actym, Alphamab Oncology, Kanaph, Mavu (now part of AbbVie), Onc.AI, Pyxis, Springbank, Tempest
- **Consultancy**: Abbvie, Akrevia, Algios, Array, Astellas, Bayer, Bristol-Myers Squibb, Eisai, EMD Serono, Ideaya, Incyte, Janssen, Merck, Mersana, Novartis, PTx, RefleXion, Regeneron, Silicon, Tesaro, Vividion
- **Research Support**: (all to institution for clinical trials unless noted) AbbVie, Agios (IIT), Array (IIT), Astellas, Bristol-Myers Squibb, CheckMate (SRA), Compugen, Corvus, EMD Serono, Evelo (SRA), Five Prime, FLX Bio, Genentech, Immunocore, Incyte, Leap, MedImmune, MacroGenics, Necktar, Novartis, Palleon (SRA), Merck, Springbank, Tesaro, Tizona, Xencor
- **Travel**: Akrevia, Bayer, Bristol-Myers Squibb, EMD Serono, Incyte, Janssen, Merck, Mersana, Novartis, Pyxis, RefleXion
- **Patents** (both provisional): Serial #15/612,657 (Cancer Immunotherapy), PCT/US18/36052 (Microbiome Biomarkers for Anti-PD-1/PD-L1 Responsiveness: Diagnostic, Prognostic and Therapeutic Uses Thereof)
Rationale for Dual Targeting of PD-1 and LAG-3

- Checkpoint molecules are leveraged by tumors or APCs to evade the immune system
- PD-1 and LAG-3 receptors are expressed on “exhausted” T-cells
 - Interactions with corresponding ligands negates anti-tumor T cell activity
- Synergy of anti-PD-1 + anti-LAG-3 mAbs in animal tumor models
 - Combination trials of anti-PD-1 plus anti-LAG-3 are ongoing
- MGD013, an investigational DART protein, targets PD-1 and LAG-3 with a single molecule
 - Greater synergistic T-cell activation (IFN-γ) with MGD013 compared with combination of individual constituents
- DART bispecific platform:
 - Stable diabody format
 - Multiple configurations & applications

MGD013

PD-1 × LAG-3

Tetravalent Bispecific DART Molecule
MGD013 Phase 1 Trial Design

Primary objectives:
- Safety, tolerability
- DLTs, MTD, MAD
- Alternate dose

Secondary objectives:
- Pharmacokinetics
- Immunogenicity
- Preliminary activity

Exploratory PD objectives:
- Receptor/ligand expression
- Serum biomarkers
- Gene expression profiling

Dose Escalation in Previously Treated Advanced Solid Tumors

DLT = dose-limiting toxicity; MAD = maximum administered dose; MTD = maximum tolerated dose; IHC = immunohistochemistry; Q2W = every 2 weeks. ClinicalTrials.gov identifier: NCT03219268. ‡ Margetuximab is an investigational Fc-optimized mAb targeting HER2. a Monotherapy and combination expansion cohorts are ongoing. b Combination cohort involved a one-step dose escalation followed by expansion. c Separate hepatocellular carcinoma (HCC) 3+3 dose escalation initiated after corresponding dose levels cleared in primary Dose Escalation. d Other expansion cohorts enrolling patients with SCCHN, SCLC, HCC, cholangiocarcinoma, cervical cancer, gastric/gastroesophageal junction carcinoma, and DLBCL. Data cutoff: April 25, 2020.
Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Dose Escalation 1 -1200 mg Q2W (n=53)</th>
<th>Monotherapy Cohort Expansion 600 mg Q2W (n=205)</th>
<th>Combination Cohort Expansion MGD013 + Margetuximab (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range), years</td>
<td>64 (24, 84)</td>
<td>60 (27, 84)</td>
<td>62 (29, 83)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>32 (60.4)</td>
<td>74 (36.1)</td>
<td>7 (33.3)</td>
</tr>
<tr>
<td>Female</td>
<td>21 (39.6)</td>
<td>131 (63.9)</td>
<td>14 (66.7)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22 (41.5)</td>
<td>60 (29.3)</td>
<td>12 (57.1)</td>
</tr>
<tr>
<td>1</td>
<td>31 (58.5)</td>
<td>145 (70.7)</td>
<td>9 (42.9)</td>
</tr>
<tr>
<td>Median prior lines of therapy (range)</td>
<td>2 (1, 9)</td>
<td>2 (1, 9)<sup>a</sup></td>
<td>2 (1, 7)</td>
</tr>
<tr>
<td>Prior Checkpoint Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>23 (43.4)</td>
<td>55 (26.8)</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>No</td>
<td>30 (56.6)</td>
<td>139 (67.8)</td>
<td>20 (95.2)</td>
</tr>
</tbody>
</table>

^a Monotherapy Cohort Expansion median prior lines of therapy derived from n=200 patients (5 patients without this information available). Data cutoff: April, 25, 2020.
Pharmacokinetics and Receptor Occupancy

Linear PK (400-1200 mg dose range) and sustained receptor occupancy (≥120 mg)

Estimates $t_{1/2} = 274$ hours (~11 days)

$pembro C_{trough} = $ published serum trough concentration of pembrolizumab at 2 mg/kg Q3W (23.6 μg/mL)

[CDER, KEYTRUDA (pembrolizumab) Clinical Pharmacology and Biopharmaceutics Review(s). 2014]
Confirmed Partial Responses (n=1, each):

- TNBC (10 mg)
- Mesothelioma (800 mg)
- Gastric Cancer (1200 mg) Refractory to anti-PD-1 treatment
- 18 patients with SD as best overall response (DCR = 48.8%)

- Well-tolerated with manageable irAEs
- Safety consistent with anti-PD-(L)1 toxicity profile
- MTD not exceeded or defined at up to 1200 mg Q2W
- Dose limiting toxicities:
 - Immune-mediated hepatitis (1200 mg – primary dose escalation); resolved without sequelae
 - Lipase increase with radiographic evidence of pancreatitis (600 mg – HCC escalation); dose level subsequently cleared

Immune-Related Adverse Events of Special Interest (AESIs)

<table>
<thead>
<tr>
<th>All Grades (N=53)</th>
<th>> Grade 3 (N=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>7 (13.2)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>6 (11.3)</td>
</tr>
<tr>
<td>Immune-mediated hepatitis</td>
<td>2 (3.8)</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>1 (1.9)</td>
</tr>
<tr>
<td>Colitis</td>
<td>1 (1.9)</td>
</tr>
<tr>
<td>Adrenal insufficiency</td>
<td>1 (1.9)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>1 (1.9)</td>
</tr>
</tbody>
</table>

* Based on patients with baseline and post-treatment tumor measurements. Data cutoff: April, 25, 2020
MGD013 Monotherapy Cohort Expansion: Safety

Overall AE Totals

<table>
<thead>
<tr>
<th>Category</th>
<th>All Grades (N=205)</th>
<th>≥ Grade 3 (N=205)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE (irrespective of causality)</td>
<td>178 (86.8)</td>
<td>86 (42.0)</td>
</tr>
<tr>
<td>Treatment-related AE</td>
<td>118 (57.6)</td>
<td>37 (18.0)</td>
</tr>
<tr>
<td>SAE (irrespective of causality)</td>
<td>63 (30.7)</td>
<td>47 (22.9)</td>
</tr>
<tr>
<td>Treatment-related SAE</td>
<td>18 (8.8)</td>
<td>11 (5.4)</td>
</tr>
<tr>
<td>AE leading to discontinuation</td>
<td>18 (8.8)</td>
<td>16 (7.8)</td>
</tr>
</tbody>
</table>

AESIs in ≥ 2 Patients

<table>
<thead>
<tr>
<th>AESI</th>
<th>No. (%) of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>17 (8.3)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>16 (7.8)</td>
</tr>
<tr>
<td>IRR or CRS</td>
<td>13 (6.3)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>11 (5.4)</td>
</tr>
<tr>
<td>Lipase increased</td>
<td>11 (5.4)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>10 (4.9)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>9 (4.4)</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>4 (2.0)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>4 (2.0)</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Adrenal insufficiency</td>
<td>2 (1.0)</td>
</tr>
</tbody>
</table>

* Includes MedDRA Preferred Terms of Rash and Maculopapular Rash.
** Includes MedDRA Preferred Terms of Pruritus and Generalized Pruritus.

* Grade 4 drug-related AEs include: lipase increased (n=3), neutrophil count decreased, and IRR (n=1, each). No Grade 5 TRAEs have been reported.

MGD013 Monotherapy Cohort Expansion: Activity

Anti-tumor activity observed in multiple tumor types

<table>
<thead>
<tr>
<th></th>
<th>TNBC</th>
<th>EOC</th>
<th>NSCLC, CPI-Naïve</th>
<th>NSCLC, post-PD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluable Patients</td>
<td>23</td>
<td>23</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>ORR (Confirmed)</td>
<td>4.3% (1/23)</td>
<td>8.7% (2/23)</td>
<td>14.3% (2/14)</td>
<td>0% (0/15)</td>
</tr>
<tr>
<td>ORR (Confirmed + Unconfirmed)</td>
<td>17.4% (4/23)</td>
<td>8.7% (2/23)</td>
<td>21.4% (3/14)</td>
<td>13.3% (2/15)</td>
</tr>
<tr>
<td>SD</td>
<td>34.8% (8/23)</td>
<td>43.5% (10/23)</td>
<td>50.0% (7/14)</td>
<td>53.3% (8/15)</td>
</tr>
<tr>
<td>DCR</td>
<td>39.1% (9/23)</td>
<td>52.2% (12/23)</td>
<td>64.3% (9/14)</td>
<td>53.3% (8/15)</td>
</tr>
</tbody>
</table>

Data cutoff: April, 25, 2020
Complete Response after Single MGD013 Administration

27-year-old male with DLBCL progressive disease after CAR-T cell therapy

- Relapsed subsequent to DA-R-EPOCH and JCAR017
- Pre-treatment biopsy: High levels of LAG-3 & PD-L1
- Received MGD013, 600 mg x 1
- Admitted on Day 11 for management of Grade 2 CRS
- CR on Day 24 (per Lugano classification)
- No evidence of CAR-T in circulation
- Allogeneic SCT performed
- Currently in remission:
 - 11 months post-MGD013
 - 9 months post-transplant

PD-1/LAG-3 Co-expression

PD-1 (magenta) and LAG-3 (green) co-localized staining
Objective Responses Associated with LAG-3 Expression

Inflammatory interferon-γ signature elevated in patients with clinical response

Archival biopsies from TNBC, EOC, and NSCLC expansion cohorts analyzed for LAG-3 (N=46) or PD-L1 (N = 45) by IHC. LAG-3 score was determined by calculating mean value of LAG-3+ cells per 40x field across 5 LAG-3+ hot spots (Chen et al., e15086 ASCO 2020). PD-L1 expression was determined per Agilent PD-L1 (22C3) pharmDx kit; TPS (NSCLC) was calculated as per interpretation manual and CPS (EOC, TNBC) calculated as follows: number of PD-L1 + cells (tumor and immune)/total number of viable tumor cells x 100. CPS <1 or TPS <1% was considered negative.

The NanoString PanCancer IO 360™ assay was used to interrogate gene expression, including the abundance of 14 immune cell types and 32 immuno-oncology signatures from archival biopsies from EOC (N= 14) NSCLC (N= 25) and TNBC (N=13) expansion cohorts.
Can Tumors Be Made More Responsive to PD-1 × LAG-3 Intervention?

Enhancing effector-cell activation via Fc-engineered mAb

Margetuximab
Investigational Fc-engineered anti-HER2 mAb

- Same anti-HER2 properties as trastuzumab
- Enhanced Fc-mediated effector function\(^a\)
- Superior PFS to trastuzumab in clinical study
 - SOPHIA: Head-to-head Phase 3 study in mBC\(^b\)
- Anti-tumor activity in advanced gastric cancer
 - In combination with anti-PD-1\(^c\)

\(^a\) Nordstrom, et al., 2011 Breast Cancer Research, 13: R123
\(^b\) Rugo, et al., ASCO 2019, Chicago, IL
\(^c\) Catenacci, et al., ASCO GI 2019, San Francisco, CA | Catenacci et al. 2020 Lancet Oncology, in press
Fc-engineered mAb plus PD-1 x LAG-3 DART: Combinatorial Biology

Fc-engineered Margetuximab
Up-regulates LAG-3/PD-L1 Expression

<table>
<thead>
<tr>
<th></th>
<th>NK</th>
<th>Monocyte</th>
<th>CD4 T</th>
<th>CD8 T</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAG-3</td>
<td>0.39</td>
<td>0.33</td>
<td>0.59</td>
<td>1.62</td>
</tr>
<tr>
<td>PD-1</td>
<td>0.099</td>
<td>0.14</td>
<td>3.92</td>
<td>6.93</td>
</tr>
<tr>
<td>PD-L1</td>
<td>0.49</td>
<td>0.038</td>
<td>0.69</td>
<td>9.41</td>
</tr>
</tbody>
</table>

Upregulation of LAG-3 and PD-L1 on NK, monocytes and T cells

Human PBMC (Donor # 731) + N87 (HER2+) gastric cancer cells; E:T = 15:1 +/- margetuximab (no supplementary IL-2)

PD-1 x LAG-3 (MGD013) Enhances Lytic Activity of Immune Cells Primed by Fc-engineered mAb (Margetuximab)

ADCC (target: margetuximab opsonized N87, E:T=10) and NK-cell killing (target: K562, E:T=10) mediated by immune cells activated for 6 days by margetuximab +/- MGD013 in the presence of N87 tumor cells.
Fc-engineered αHER2 plus PD-1 × LAG-3 DART (Margetuximab plus MGD013)

Preliminary results in patients with relapsed/refractory HER2+ solid tumors

- ORR = 42.9% (6/14 evaluable pts)
- Includes unconfirmed objective responses
- Well-tolerated
- Responding patients remain on therapy

Baseline PD-L1 & LAG-3 in # of Responding Patients (N = 6)

<table>
<thead>
<tr>
<th>PD-L1 CPS:</th>
<th>< 1</th>
<th>1</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAG-3 Score:</th>
<th>< 5</th>
<th>5-15</th>
<th>TBD/NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

GEJ pt with apparent pseudo-progression (PD per RECIST), now with 37.5% reduction in target lesions (iPR per iRECIST).
Durable Response in Patient Receiving MGD013 plus Margetuximab

Resolution of chest wall disease with confirmed PR of overall tumor burden

Metastatic HER2+ breast cancer in 67-year-old female

- Previously progressed on:
 - 1L pertuzumab/trastuzumab/anastrozole
 - 2L TDM1/anastrozole
 - 3L TDM1

Baseline tumor burden:

- Right breast, liver and lymph nodes
- PD-L1 CPS: <1; LAG-3 score: 0.8
- Patient remains on treatment in Cycle 15 with improved clinical status and ongoing partial response
 - 1st tumor assessment: -46%
 - 2nd tumor assessment: -61%
 - 3rd tumor assessment: -65%
 - 4th tumor assessment: -66%

Baseline

Baseline Day 15†

Baseline Day 28†

Baseline Day 70

Baseline Day 295

Note: Images correspond to the patient’s right chest wall
† Day 15 and Day 28 images obtained after one dose of the combination

Jason J. Luke, MD, FACP @jasonlukemd
MGD013 (PD-1 × LAG-3 DART Molecule): Conclusions

First-in-class bispecific checkpoint inhibitor
• Designed to independently or coordinately block PD-1 and LAG-3
• Well tolerated at doses up to 1200 mg Q2W
• RP2D: 600 mg Q2W or Q3W
• Safety profile consistent with anti-PD-1 monotherapy

Encouraging monotherapy activity in multiple tumor types
• Baseline LAG-3 expression & IFN-γ signature associated with objective response

Compelling preliminary combinatorial activity with margetuximab (Fc-engineered mAb)
• >40% ORR observed in low PD-L1-expressing, relapsed/refractory HER2+ tumors
 • Compares favorably to low historical response rates to anti-HER2 ± CPI

Evaluation of MGD013 as monotherapy and in combination with Fc-engineered mAbs (incl. margetuximab) is ongoing
Australia
Philip Clingan
Anthony Joshua
Girish Mallesara
Andrew Weickhardt

Bulgaria
Nadezhda Miteva
Krasimir Nikolov
Krasimir Oreshkov

Spain
Analia Azaro Pedrazzoli
Javier Cortes Castan
Maria Jose De Miguel Luken

Thailand
Chaiyut Charoentum
Arunee Dechapunkul
Virote Sriuranpong

Poland
Monika Dlugosz-Danecka
Iwona Lugowska
Rodryg Ramlau
Monika Tomaszewska-Kiecana
Lucjan Wyrwicz

Ukraine
Igor Bondarenko
Yevhen Hotko
Anna Kryzhanivska
Andriy Kurochkin
Halyna Pylypenko
Serhii Shevnia

United States of America
Charu Aggarwal
Shakeela Bahadur
George Blumenschein
Bartosz Chmielowski
Anthony El-Khoueiry
Lipika Goyal
Erika Hamilton
Hedy Kindler
Jason Luke
Robin Norris
Manish Patel
Cesar Santa-Maria
Susanna Ulahannan
Jie Wang

Investigators
Thank you to the patients and their families who participated or continue to participate in this study.