Target Validation, Antibody Discovery and Preclinical Data Supporting ADAM9 as an Antibody-Drug Conjugate Therapeutic Target for Solid Tumors

Juniper A. Scribner, Bhawati Barat, Stuart W. Hicks, Nicholas C. Yoder, Thomas Son, Lusiana Widjaja, Gundo Diedrich, Sergey Gorlatov, Jeff Hooley, Ann Easton, Peter Lung, Anushika De Costa, Francine Chen, Michael Chiechi, Pam Li, Monica Licea, Timothy E. Hotalling, Michael Spieldt, Valentina Ciccarene, Nadia Gantz, James Tamura, Megan E. Fuller, Molly A. McShea, Scott Koenig, Syd Johnson, Paul A. Moore, Ezio Bonvini, Deryk Loo

MacroGenics, Inc., Rockville, MD and South San Francisco, CA; ImmunoGen, Inc., Waltham, MA

Abstract

Introduction: A target-validated approach based on intact cell immunizations with fetal progenitor cells or tumor stem cells followed by an immunotoxin technology (ITX) screen for cancer-specific candidates, led to the identification of anti-ADAM9 reactivity in a pan-cancer proteomics screen for ADAM9 overexpression.

Background: Overexpression of ADAM9 is observed in multiple carcinomas, including NSCLC, colon, gastric, pancreatic, and kidney cancers. ADAM9 is involved in the protein ectodomain shedding of membrane-bound molecules (disintegrins). Disintegrins are a family of metalloproteases with a Cystein-rich domain and a Metalloprotease domain.

Methods: Intact cell immunizations of mice with viable human fetal progenitor cells or tumor initiating/cancer stem-like cells were used to generate mAbs. Immunoprecipitation/mass spectrometry analysis of the panel of ADAM9-positive cell lines was performed to further evaluate the mAbs as ADC epitope-specificity. mAbs were also screened to identify those that strongly react with representative tumors to determine the therapeutic potential of anti-ADAM9 antibody-drug conjugates (ADCs) toward ADAM9-expressing solid cancers.

Results: Anti-ADAM9 mAbs exhibited strong reactivity toward the tumor epithelium of solid cancers, including pancreatic, kidney, prostate, bladder, breast, colon, lung, and ovarian cancer, but limited reactivity toward normal tissues. Anti-ADAM9 mAbs were efficiently internalized and processed by tumor cell lines, including lines with only modest ADAM9 expression. Anti-ADAM9 ADCs exhibited specific, dose-dependent cytotoxicity toward ADAM9-positive cancer cell lines in vitro, with IC50 values in the nanomolar range. Humanization and affinity maturation of the lead mAb yielded a development candidate that retains potent antitumor activity toward ADAM9-positive tumor cell lines and equivalent, high affinity binding to both human and cynomolgus monkey ADAM9.

Conclusion: ADAM9 is a cell surface antigen that is overexpressed on a wide range of solid tumors. Anti-ADAM9 mAbs that were strongly reactive with representative tumors exhibited high affinity for the antigen and were efficiently internalized and processed by ADAM9-bearing tumor cells. Anti-ADAM9 ADCs demonstrated dose-dependent cytotoxicity in vitro toward a panel of ADAM9-positive tumor cell lines. Our findings demonstrate that an ADC targeting ADAM9 may serve as a potential therapeutic for ADAM9-expressing solid tumors.

Antibody/Target Discovery Platform

ADAM9 is Highly Expressed on Range of Cancers

ADAM9 mAbs Retains Binding Affinity

ADAM9 mAbs are Rapidly Internalized and Processed

Background

- Intact cell immunizations of mice with viable human fetal progenitor cells or tumor stem cells were used to generate mAbs.
- An iPCR screen for cancer-specific mAbs identified a panel with high tumor-versus-normal differential and Immunoprofiling/mass spectrometry analysis of the panel identified mAbs that had specificity toward ADAM9.

Objectives

- Validate ADAM9 as a therapeutic target
- Evaluate the therapeutic potential of anti-ADAM9 antibody-drug conjugates

Antibody Target Discovery Platform

- Cancer Type
 - Pancreatic Cancer
 - Gastric Cancer
 - Breast Cancer
 - Prostate Cancer
- mAb [pM]
 - DU 145
 - NCI-H1703
 - MDA-MB-468
 - PA-1
 - SNU-16
 - SW48

Results

- ADAM9 is highly expressed on a range of cancers.
- Humanized ADAM9 mAbs retain binding affinity.
- ADAM9 mAbs are rapidly internalized and processed.

Conclusions

- ADAM9 is a cell surface antigen that is overexpressed on a wide range of solid tumors.
- Anti-ADAM9 mAbs are efficiently internalized and processed by ADAM9-expressing tumor cells.
- ADAM9 mAbs conjugated to a microtubule inhibitor (DM1) or a DNA alkylating agent (DN4) demonstrated dose-dependent cytotoxicity in vitro toward a panel of ADAM9-positive tumor cell lines.
- Humanized ADAM9-DM1 mAbs exhibited potent in vitro cytotoxicity toward ADAM9-expressing tumor cell lines.
- ADAM9-DM1 and ADAM9-DN4-based ADAM9 mAbs may serve as potential therapeutic targets for ADAM9-expressing solid tumors.

Summary of SPR Analysis

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>mAb [pM]</th>
<th>Binding of Human ADAM9</th>
<th>Binding of Cyno ADAM9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic Cancer</td>
<td>44 41 5</td>
<td>4.8E5 5.4E-4</td>
<td>4.0E5 5.1E-4</td>
</tr>
<tr>
<td>Gastric Cancer</td>
<td>30 227</td>
<td>3.0E5 5.0E-5</td>
<td>3.0E5 5.0E-5</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>6000</td>
<td>2.4E5 0.014</td>
<td>2.4E5 0.014</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>24 92 73</td>
<td>1.2E5 0.011</td>
<td>1.2E5 0.011</td>
</tr>
<tr>
<td>NCI-H1703</td>
<td>4 ND ND</td>
<td>5.0E5 1.2E-3</td>
<td>5.0E5 1.2E-3</td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>24 92 73</td>
<td>1.0E6 2.6E-3</td>
<td>1.0E6 2.6E-3</td>
</tr>
<tr>
<td>PA-1</td>
<td>4 ND ND</td>
<td>4.8E5 5.4E-4</td>
<td>4.0E5 5.1E-4</td>
</tr>
<tr>
<td>SNU-16</td>
<td>30 227</td>
<td>3.0E5 5.0E-5</td>
<td>3.0E5 5.0E-5</td>
</tr>
<tr>
<td>SW48</td>
<td>6000</td>
<td>2.4E5 0.014</td>
<td>2.4E5 0.014</td>
</tr>
</tbody>
</table>

Conclusions

- ADAM9 is a cell surface antigen that is overexpressed on a wide range of solid tumors.
- Anti-ADAM9 mAbs are efficiently internalized and processed by ADAM9-expressing tumor cells.
- ADAM9 mAbs conjugated to a microtubule inhibitor (DM1) or a DNA alkylating agent (DN4) demonstrated dose-dependent cytotoxicity in vitro toward a panel of ADAM9-positive tumor cell lines.
- Humanized ADAM9-DM1 mAbs exhibited potent in vitro cytotoxicity toward ADAM9-expressing tumor cell lines.
- ADAM9-DM1 and ADAM9-DN4-based ADAM9 mAbs may serve as potential therapeutic targets for ADAM9-expressing solid tumors.