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Background
Monoclonal Antibodies
 � Enoblituzumab (MGA271) is an investigational, humanized immunoglobulin G (IgG) 1κ monoclonal 

antibody (mAb) that binds the B7-homolog 3 (B7-H3) immunoligand with enhanced binding to the 
activating Fc gamma receptors CD16A, particularly the low-affinity allele CD16A-158F (Figure 1)1

 � Retifanlimab (MGA012, INCMGA00012) is an investigational humanized, hinge-stabilized, IgG4κ 
anti-programmed death (PD)-protein 1 (PD-1) mAb blocking binding of PD-ligand 1 (PD-L1) or  
PD-ligand 2 (PD-L2) to PD-1 (Figure 1)2

Bispecific DART® Molecule 
 � Tebotelimab (MGD013) is an investigational humanized, Fc-bearing, bispecific, tetravalent DART 

molecule that concomitantly binds to PD-1 and lymphocyte-activation gene 3 (LAG-3), inhibiting 
their interaction with PD-L1 or PD-L2 and major histocompatibility complex class II (Figure 2)3

Figure 1. Mechanism of Action of Monoclonal Antibodies in this Study 
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aRetifanlimab is licensed to Incyte 
B7-H3, B7-homolog 3; Fab, antigen-binding fragment; Fc, fragment crystallizable; FcγR, Fc gamma receptors; IgG, immunoglobulin G; PD-1, programmed 
death-protein 1; PD-L1, programmed death-ligand 1; PD-L2, programmed death-ligand 2.

Figure 2. Mechanism of Action of Tebotelimab
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Fab, antigen-binding fragment; Fc, fragment crystallizable; IgG, immunoglobulin G; LAG-3, lymphocyte-activation gene 3; MHC-II, major histocompatibility 
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Rationale for Study
 � The simultaneous targeting of either PD-1 and B7-H3, or PD-1, LAG-3, and B7-H3 is supported by 

the complementary biology of these 3 molecules in modulating the immune response against 
tumor cells4

 � In vitro data suggest that both retifanlimab and tebotelimab have potential to sustain 
enoblituzumab-mediated immune activation and antitumor activity

 � Combination of enoblituzumab with retifanlimab or tebotelimab sustained the ability of natural 
killer cells and CD8+ T cells from peripheral blood mononuclear cells co-cultured with tumor cells to 
produce interferon gamma upon restimulation (Figure 3)

Figure 3. Effect of Enoblituzumab With Retifanlimab or Tebotelimab on the Ability 
of Natural Killer Cells and CD8+ T Cells to Produce Interferon-γ Upon Restimulationa
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aPeripheral blood mononuclear cells were co-cultured with SAS tumor cells in the presence of enoblituzumab alone, or in combination with retifanlimab or 
tebotelimab for 6 days. Cells were collected and restimulated with PMA/ionomycin in the presence of GolgiStop. Levels of NK cell– and CD8+ cell–specific 
intracellular IFN-γ were measured by fluorescence-activated cell sorting.
IFN-γ, interferon gamma; mAb, monoclonal antibody; NK, natural killer; PMA, phorbol 12-myristate 13-acetate; SAS, B7-homolog 3–expressing head and 
neck cancer cell line.

 � Both retifanlimab and tebotelimab enhanced enoblituzumab-dependent cytotoxicity targeting  
B7-H3–expressing tumor cells (Figure 4)

Figure 4. Effect of Retifanlimab and Tebotelimab on Enoblituzumab-Dependent  
Cytotoxicitya

PBMCs Co-Cultured With SAS Tumor Cells Plus 

Enoblituzumab
0 μg/mL

Enoblituzumab
0.05 μg/mL

Enoblituzumab
5 μg/mL

Control mAb
5 μg/mL

(–) Reti Tebo (–) Reti Tebo (–) Reti Tebo (–) Reti Tebo PBMC
only

0

10,000

20,000

30,000

40,000

Lu
m

in
es

ce
nc

e,
 R

LU

aPBMCs were co-cultured with SAS tumor cells in the presence of enoblituzumab alone, or in combination with retifanlimab or tebotelimab for 6 days. The 
values in fluorescence-activated cell sorting plots represent the percent of positive cells within the natural killer cell (CD3–CD56+) gate. Cells were collected 
and used as effector cells to measure the cytotoxicity targeting B7-homolog 3–expressing tumor cell line (NCI H1975-luc) at an enoblituzumab:tebotelimab 
ratio of 15:1. The loss of luminescence signal was used to measure the target cell lysis.
mAb, monoclonal antibody; PBMC, peripheral blood mononuclear cell; reti, retifanlimab; RLU, relative light units; SAS, B7-homolog 3–expressing head and 
neck cancer cell line; tebo, tebotelimab.

 � Enoblituzumab mediated antibody-dependent cellular cytotoxicity (ADCC) activity in preclinical 
studies across multiple cancer cell lines expressing B7-H3, including melanoma, lung cancer, 
prostate cancer, breast cancer, bladder cancer, and renal cancer1

 � In a multicenter Phase 1/2 study (NCT02475213), combination of enoblituzumab and 
pembrolizumab demonstrated safety and antitumor activity in patients with checkpoint inhibitor-
naïve squamous cell carcinoma of head and neck (SCCHN) and non–small cell lung cancer, with 
objective response rates (ORR) of 33.3% and 35.7%, respectively (Table 1)5

 � The observed ORR for patients treated with the combination of enoblituzumab and 
pembrolizumab represent a potential strategy to improve tumor responses in patients treated 
with checkpoint inhibitors monotherapy (Table 1)

Table 1. Summary of Efficacy Data With Anti-B7-H3 Blockade Plus Anti-PD-1 
Blockade in the Context of Anti-PD-1 Blockade Monotherapy in Patients With 
SCCHN or NSCLC

SCCHN

Blockade
Anti-PD-1

+ anti-B7-H3 Anti-PD-1 only

Agent(s)
Pembrolizumab 
+ enoblituzumab Nivolumab Pembrolizumab Pembrolizumab

Study CP-MGA271-03
(NCT02475213)5

CheckMate-141 
(NCT02105636)6

KEYNOTE-012 
(NCT01848834)7  

KEYNOTE-040 
(NCT02252042)8   

N 18 240 174 247
ORR 33% 13% 16% 15%

NSCLC

Blockade
Anti-PD-1

+ anti-B7-H3 Anti-PD-1 only

Agent(s)
Pembrolizumab 
+ enoblituzumab Nivolumab Nivolumab Pembrolizumab

Study CP-MGA271-03
(NCT02475213)5

CheckMate-057
(NCT01673867)9

CheckMate-017
(NCT01642004)10  

KEYNOTE-001
(NCT01295827)11    

Histology Squamous and 
non-squamous Non-squamous Squamous Squamous and 

non-squamous
N 14 108 54 87
ORR 36% 9% 19% 8%

B7-H3, B7-homolog 3; NSCLC, non–small cell lung cancer; ORR, objective response rate; PD-1, programmed death-protein 1; SCCHN, squamous cell  
carcinoma of head and neck.

Study Design

 � This study (NCT04634825) is a Phase 2, open-label, non-randomized trial in the first-line 
treatment of patients with recurrent or metastatic SCCHN not curable by local therapy with no 
prior systemic therapy for SCCHN in the recurrent or metastatic setting

 � The study is planned to be conducted at approximately 35 centers in approximately 5 
countries

 � Approximately 80 patients will be enrolled based on the combined positive score (CPS) in 1 of 
the following cohorts (Figure 5):

 – Retifanlimab Cohort (PD-L1–positive CPS ≥1; N=50)

 – Tebotelimab Cohort (PD-L1–negative CPS <1; N=30)

 � Patients in the Retifanlimab Cohort will receive enoblituzumab 15 mg/kg and retifanlimab  
375 mg once every 3 weeks, in cycles of 3 weeks’ duration, for a maximum of 35 cycles

 � Patients in the Tebotelimab Cohort will receive enoblituzumab 15 mg/kg and tebotelimab  
600 mg once every 3 weeks, in cycles of 3 weeks’ duration, for a maximum of 35 cycles

 � Key study end points are summarized in Table 2

 � In the Tebotelimab Cohort, safety (dose-limiting toxicities) will be monitored through Cycle 2 
Day 7 after dosing the first 6 patients and the second 6 patients 

 � The initial tumor assessment will occur at the end of Cycle 2 (after approximately 6 weeks), 
and at the end of every 3 cycles thereafter (approximately every 9 weeks)

 � After receipt of the last dose of study treatment, patients will enter an efficacy follow-up 
period and will be followed for survival

 � The study started in March 2021, and patients continue to be recruited 

Figure 5. NCT04634825 Study Schema: An Open-Label, Non-Randomized Phase 2 Study
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CPS, combined positive score; DCR, disease control state; DOR, duration of response; LAG-3, lymphocyte-activation gene 3; ORR, objective response rate; 
OS, overall survival; PD-1, programmed death-protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; Q3W, every 3 weeks;  
SCCHN, squamous cell carcinoma of head and neck.

Table 2. Key Study Objectives

Cohort Primary objective Secondary objectives Exploratory objectives

Enoblituzumab + 
retifanlimab

 � Investigator-
assessed ORR by 
RECIST v1.1

 � Investigator-
assessed PFS, DCR, 
DOR, and OS

 � Safety and 
tolerability

 � PK and 
immunogenicity of 
enoblituzumab + 
retifanlimab

 � Relationships between PK, 
pharmacodynamics, safety, and 
antitumor activity

 � Population PK and exposure– 
response analyses

 � Relationships between PD-1, PD-L1, 
B7-H3, and LAG-3 expression on tumor 
cells and response

 � The immune-regulatory activity in vivo

 � Circulating immune cells and effect  
of treatment

 � Peripheral biomarkers and correlation 
with potential clinical response

 � Gene expression profiles and FcγR 
polymorphism in PBMCs and/or 
pretreatment tumor biopsies and 
correlation with clinical response

Enoblituzumab + 
tebotelimab

 � Safety and 
tolerability

 � Investigator-
assessed ORR by 
RECIST v1.1

 � Investigator-
assessed PFS, DCR, 
DOR, and OS

 � PK and 
immunogenicity of 
enoblituzumab + 
tebotelimab

B7-H3, B7-homolog 3; DCR, disease control rate; DOR, duration of response; FcγR, Fc gamma receptors; LAG-3, lymphocyte-activation gene 3;  
ORR, objective response rate; OS, overall survival; PBMC, peripheral blood mononuclear cell; PD-1, programmed death-protein 1; PD-L1, programmed 
death-ligand 1; PFS, progression-free survival; PK, pharmacokinetics; RECIST, Response Evaluation Criteria in Solid Tumors.

Key Inclusion Criteria
 � Patients ≥18 years of age with histologically proven recurrent or metastatic SCCHN not curable 

by local therapy

 � No prior systemic therapy for SCCHN in the recurrent or metastatic setting

 – Patients who completed systemic therapy >6 months before the study, if given as part of 
multimodal treatment for locally advanced disease, are eligible

 � Primary tumor locations of oropharynx, oral cavity, hypopharynx, or larynx

 � Eastern Cooperative Oncology Group performance status of 0 or 1, verified within 3 days 
before Day 1

 � Life expectancy ≥6 months

 � At least 1 radiographically measurable lesion (target lesion), as defined in Response Evaluation 
Criteria in Solid Tumors version 1.1

 � An identified formalin-fixed, paraffin-embedded tumor specimen for immunohistochemical 
evaluation of pharmacodynamic markers of interest

 � PD-L1 expression level that is either:

 – Positive (CPS ≥1) for the Retifanlimab Cohort, or

 – Negative (CPS <1) for the Tebotelimab Cohort

Key Exclusion Criteria
 � Primary tumor site of upper esophagus, salivary gland, or nasopharynx (any histology)

 � Disease suitable for local therapy administered with curative intent

 � Progressive disease within 6 months of completion of curatively intended systemic treatment 
for locoregionally advanced SCCHN

 � Radiation therapy (or other nonsystemic therapy) within 2 weeks before the first dose  
of study drug

 � Prior therapy with an anti-B7-H3, anti-PD-1, anti-PD-L1, anti-PD-L2, or anti-LAG-3 agent

 � Toxicity of prior therapy that has not recovered to Grade ≤1 or baseline, with the exception of 
any grade of alopecia and anemia not requiring transfusion support

 � Diagnosis of immunodeficiency or receiving systemic steroid therapy corticosteroids (≥10 mg 
per day prednisone or equivalent) or any other form of immunosuppressive therapy within  
14 days before the first dose of study drug
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